Skip to main content
Log in

Synthesis, characterization and electrical properties of novel Mn substituted MgAl2O4 synthesized by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanostructured manganese doped magnesium aluminate (Mg1−xMnxAl2O4, where x = 0.0, 0.25, 0.50, 0.75, 1.0) were prepared by a sol–gel method. All the samples were characterised by TGA, XRD, SEM, EDAX, TEM and IR spectroscopy techniques. The semiconducting nature of materials were investigated by DC resistivity measurement. The TGA curves show that spinel the oxides are formed at 600 °C. The XRD studies reveal formation of cubic spinel phase with average crystallite size of 28 nm. The composition of Mg1−xMnxAl2O4, (x = 0.0, 0.50, 1.0) shows spherical interlinked fibrous morphology. The elemental compositions determined by energy dispersive X-ray analysis (EDAX) indicate desired composition. Particle size obtained from TEM analysis was found to be ~23 nm. The IR spectra show two strong characteristic absorption bands at tetrahedral and octahedral sites. The temperature dependent variation of dc resistivity of material reflects semiconducting nature of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Goldstein, J. Eur. Ceram. Soc. 32, 2869 (2012)

    Article  Google Scholar 

  2. F.S. Al-Hazmi, W.E. Mahmoud, J. Eur. Ceram. Soc. 34(12), 3047 (2014)

    Article  Google Scholar 

  3. B. Ismail, S.T. Hussain, S. Akram, Chem. Eng. J. 219, 395 (2013)

    Article  Google Scholar 

  4. A.E. Lavat, M.C. Grasselli, E.G. Lovecchio, Ceram. Int. 36, 15 (2010)

    Article  Google Scholar 

  5. N.M. Khalil, M.B. Hassan, E.M.M. Ewais, F.A. Saleh, J. Alloys Compd. 496, 600 (2010)

    Article  Google Scholar 

  6. A. Laobuthee, S. Wongkasemjit, E. Traversa, J. Eur. Ceram. Soc. 20, 91 (2000)

    Article  Google Scholar 

  7. M.J. Iqbal, B. Ismail, C. Rentenberger, H. Ipser, Mater. Res. Bull. 46, 2271 (2011)

    Article  Google Scholar 

  8. T. Shiono, K. Shiono, K. Miyamoto, G. Pezzotti, J. Am. Ceram. Soc. 83, 235 (2000)

    Article  Google Scholar 

  9. J. Guo, H. Lou, H. Zhao, X. Wang, X. Zheng, Mater. Lett. 58, 1920 (2004)

    Article  Google Scholar 

  10. R. Jiang, Z. Xie, C. Zhang, Q. Chen, Catal. Today 93–95, 359 (2004)

    Article  Google Scholar 

  11. M.A.L. Braulio, M. Rigaud, A. Buhr, C. Parr, V.C. Pandolfelli, Ceram. Int. 37(6), 1705 (2011)

    Article  Google Scholar 

  12. F.R. Perez, C.A. Barrero, A.R.H. Walker, K.E. García, K. Nomura, Mater. Chem. Phys. 117(1), 214 (2009)

    Article  Google Scholar 

  13. B.Q. Zhu, B.X. Fang, X.C. Li, Ceram. Int. 36, 2493 (2010)

    Article  Google Scholar 

  14. B.Q. Zhu, B.X. Fang, X.C. Li, X. Jiang, J. Chin. Ceram. Soc. 38, 730 (2010)

    Google Scholar 

  15. A. Rahman, R. Jayaganthan, J. Nanostruct. Chem. 3, 147 (2015)

    Article  Google Scholar 

  16. M.F. Zawrah, H. Hamaad, S. Meky, Ceram. Int. 33, 969 (2007)

    Article  Google Scholar 

  17. R.B. Jotania, P.A. Patel, Int. J. Eng. Res. Appl. 2, 494 (2012)

    Google Scholar 

  18. Y. Suyama, A. Kato, Ceram. Int. 8, 17 (1982)

    Article  Google Scholar 

  19. C.T. Wang, L.S. Lin, S.J. Yang, J. Am. Ceram. Soc. 75, 2240 (1992)

    Article  Google Scholar 

  20. A. Jouini, A. Yoshikawaa, T. Fukudaa, G. Boulonb, J. Cryst. Growth 293, 517 (2006)

    Article  Google Scholar 

  21. V.T. Gritsyna, YuG Kazarinov, V.B. Kol’ner, L.A. Lytvynov, K.E. Sickafus, Funct. Mater. 12, 719 (2005)

    Google Scholar 

  22. P.P. Hankare, V.T. Vader, U.B. Sankpal, R.P. Patil, A.V. Jadhav, I.S. Mulla, J. Mater. Sci. Mater. Electron. 22, 1109 (2011)

    Article  Google Scholar 

  23. A.S. Tapase, R.P. Patil, S.D. Delekar, I.S. Mulla, P.P. Hankare, J. Mater. Sci. Mater. Electron. 25, 369 (2014)

    Article  Google Scholar 

  24. P.V.M. Kutty, S. Dasgupta, Ceram. Int. 39, 7891 (2013)

    Article  Google Scholar 

  25. S.H. Seok, S.H. Choi, E.D. Park, S.H. Han, J.S. Lee, J. Catal. 209, 6 (2002)

    Article  Google Scholar 

  26. W.M. Shaheen, K.S. Hong, Thermochim. Acta 381, 153 (2002)

    Article  Google Scholar 

  27. A. Saberi, F. Golestani-Fard, H. Sarpoolaky, M. Willert-Porada, T. Gerdes, R. Simon, J. Alloys Compd. 462, 142 (2008)

    Article  Google Scholar 

  28. K.J. Standley, Oxide Magnetic Materials (Clarendon press, Oxford, 1962)

    Google Scholar 

  29. A. Cottrell, An Introduction to Metallurgy (Edward Arnold, London, 1967)

    Google Scholar 

Download references

Acknowledgments

Author (PPH) is very thankful to UGC, New Delhi for financial assistance through UGC-BSR fuculty fellowship F. No. 18-1(46)/2013 (BSR). ISM is grateful to CSIR India for granting him Emeritus Scientist scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Hankare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mali, A.V., Wandre, T.M., Sanadi, K.R. et al. Synthesis, characterization and electrical properties of novel Mn substituted MgAl2O4 synthesized by sol–gel method. J Mater Sci: Mater Electron 27, 613–619 (2016). https://doi.org/10.1007/s10854-015-3796-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3796-3

Keywords

Navigation