Skip to main content
Log in

Non-adiabatic Dynamics in d + id-Wave Fermionic Superfluids

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We consider a problem of non-adiabatic dynamics of a 2D fermionic system with d + id-wave symmetry of pairing amplitude. Under the mean-field approximation, we determine the asymptotic behavior of the pairing amplitude following a sudden change of coupling strength. We also study an extended d + id pairing system for which the long-time asymptotic states of the pairing amplitude in the collisionless regime can be determined exactly. By using numerical methods, we have identified three non-equilibrium steady states described by different long-time asymptotes of the pairing amplitude for both the non-integrable and the integrable versions of d + id-wave models. We found that despite of its lack of integrability, long-time dynamics resulting from pairing quenches in the non-integrable d + id model are essentially similar to the ones found for its exactly integrable extended d + id model. We also obtain the long-time phase diagram of the extended d + id model through the Lax construction that exploits underlying integrability showing that the dynamic phases obtained by numerics are consistent with the dynamics of the exactly integrable approach. Both models describe a topological fermionic system with a topologically non-trivial BCS phase appearing at weak coupling strength. We show that the presence of oscillating order parameter region in the chiral d + id pairing dynamics differs from the d-wave (\(d_{x^{2}-y^{2}}\)), which may be used to probe pairing symmetries of chiral superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gaudin, M.: La fonction d’onde de Bethe. Masson, Paris (1983)

    MATH  Google Scholar 

  2. Sklyanin, E. K.: . J. Sov. Math. 47, 2473 (1989)

    Article  MathSciNet  Google Scholar 

  3. Sklyanin, E. K.: . Progr. Theoret. Phys. Suppl. 118, 35 (1995)

    Article  ADS  Google Scholar 

  4. Yuzbashyan, E. A., Altshuler, B. L., Kuznetsov, V. B., Enolskii, V. Z.: . J. Phys. A Math. Gen. 38, 7831 (2005a)

  5. Yuzbashyan, E. A., Altshuler, B. L., Kuznetsov, V. B., Enolskii, V. Z.: . Phys. Rev. B 72, 220503 (2005b)

  6. Yuzbashyan, E. A., Tsyplyatyev, O., Altshuler, B. L.: . Phys. Rev. Lett. 96, 097005 (2006)

    Article  ADS  Google Scholar 

  7. Yuzbashyan, E. A., Dzero, M., Gurarie, V., Foster, M. S.: . Phys. Rev. A 91, 033628 (2015). https://link.aps.org/doi/10.1103/PhysRevA.91.033628

    Article  ADS  Google Scholar 

  8. Foster, M. S., Dzero, M., Gurarie, V., Yuzbashyan, E. A.: . Phys. Rev. B 88, 104511 (2013)

    Article  ADS  Google Scholar 

  9. Foster, M. S., Gurarie, V., Dzero, M., Yuzbashyan, E. A.: . Phys. Rev. Lett. 113, 076403 (2014). http://link.aps.org/doi/10.1103/PhysRevLett.113.076403

    Article  ADS  Google Scholar 

  10. Peronaci, F., Schiró, M., Capone, M.: . Phys. Rev. Lett. 115, 257001 (2015). https://link.aps.org/doi/10.1103/PhysRevLett.115.257001

    Article  ADS  Google Scholar 

  11. Barankov, R. A., Levitov, L. S: pre-print arXiv:0704.1292 (2007)

  12. Dong, Y., Dong, L., Gong, M., Pu, H.: arXiv:1406.3821. 1406.3821v1 (2014)

  13. Dzero, M., Kirmani, A. A., Yuzbashyan, E. A.: . Phys. Rev. A 92, 053626 (2015). https://link.aps.org/doi/10.1103/PhysRevA.92.053626

    Article  ADS  Google Scholar 

  14. Fausti, D., Tobey, R. I., Dean, N., Kaiser, S., Dienst, A., Hoffmann, M. C., Pyon, S., Takayama, T., Takagi, H., Cavalleri, A.: . Science 331, 189 (2011). ISSN 0036-8075, http://science.sciencemag.org/content/331/6014/189.full.pdf, http://science.sciencemag.org/content/331/6014/189

    Article  ADS  Google Scholar 

  15. Matsunaga, R., Shimano, R.: . Phys. Rev. Lett. 109, 187002 (2012). http://link.aps.org/doi/10.1103/PhysRevLett.109.187002

    Article  ADS  Google Scholar 

  16. Matsunaga, R., Hamada, Y. I., Makise, K., Uzawa, Y., Terai, H., Wang, Z., Shimano, R.: . Phys. Rev. Lett. 111, 057002 (2013)

    Article  ADS  Google Scholar 

  17. Hu, W., Kaiser, S., Nicoletti, D., Hunt, C. R., Gierz, I., Hoffmann, M. C., Le Tacon, M., Loew, T., Keimer, B., Cavalleri, A.: . Nat. Mater. 13, 705 EP (2014). https://doi.org/10.1038/nmat3963

    Article  ADS  Google Scholar 

  18. Matsunaga, R., Tsuji, N., Fujita, H., Sugioka, A., Makise, K., Uzawa, Y., Terai, H., Wang, Z., Aoki, H., Shimano, R.: . Science 345, 1145 (2014). ISSN 0036-8075, http://science.sciencemag.org/content/345/6201/1145.full.pdf. http://science.sciencemag.org/content/345/6201/1145

    Article  ADS  MathSciNet  Google Scholar 

  19. Mankowsky, R., Först, M., Loew, T., Porras, J., Keimer, B., Cavalleri, A.: . Phys. Rev. B 91, 094308 (2015). https://link.aps.org/doi/10.1103/PhysRevB.91.094308

    Article  ADS  Google Scholar 

  20. Graf, J., Jozwiak, C., Smallwood, C. L., Eisaki, H., Kaindl, R. A., Lee, D.-H., Lanzara, A.: . Nat. Phys. 7, 805 EP (2011). https://doi.org/10.1038/nphys2027

    Article  Google Scholar 

  21. Smallwood, C. L., Hinton, J. P., Jozwiak, C., Zhang, W., Koralek, J. D., Eisaki, H., Lee, D.-H., Orenstein, J., Lanzara, A.: . Science 336, 1137 (2012). ISSN 0036-8075, http://science.sciencemag.org/content/336/6085/1137.full.pdf, http://science.sciencemag.org/content/336/6085/1137

    Article  ADS  Google Scholar 

  22. Böker, J., Volkov, P. A., Efetov, K. B., Eremin, I.: . Phys. Rev. B 96, 014517 (2017). https://link.aps.org/doi/10.1103/PhysRevB.96.014517

    Article  ADS  Google Scholar 

  23. Laughlin, R. B.: . Phys. Rev. Lett. 80, 5188 (1998). https://link.aps.org/doi/10.1103/PhysRevLett.80.5188

    Article  ADS  Google Scholar 

  24. Horovitz, B., Golub, A.: . Phys. Rev. B 68, 214503 (2003). https://link.aps.org/doi/10.1103/PhysRevB.68.214503

    Article  ADS  Google Scholar 

  25. Liu, F., Liu, C.-C., Wu, K., Yang, F., Yao, Y.: . Phys. Rev. Lett. 111, 066804 (2013). https://link.aps.org/doi/10.1103/PhysRevLett.111.066804

    Article  ADS  Google Scholar 

  26. Carmi, E., Koren, G., Averbach, A.: Nature (London) 404. https://www.nature.com/articles/35009062(2000)

  27. Dagan, Y., Deutscher, G.: . Phys. Rev. Lett. 87, 177004 (2001). https://link.aps.org/doi/10.1103/PhysRevLett.87.177004

    Article  ADS  Google Scholar 

  28. Krishana, K., Ong, N. P., Li, Q., Gu, G. D., Koshizuka, N.: . Science 277, 83 (1997). http://science.sciencemag.org/content/277/5322/83

    Article  Google Scholar 

  29. Nandkishore, R., Levitov, L. S., Chubukov, A. V.: Nat. Phys. 8. https://doi.org/10.1038/nphys2208 (2012)

    Article  ADS  Google Scholar 

  30. Richardson, R.: . Phys. Lett. 3, 277 (1963). ISSN 0031-9163

    Article  ADS  Google Scholar 

  31. Richardson, R., Sherman, N.: . Nucl. Phys. 52, 221 (1964). ISSN 0029-5582

    Article  Google Scholar 

  32. Gaudin, M.: Travaux de Michel Gaudin: Les Modeles Exactement Resolus. Les Editions de Physiques, Paris (1995)

    Google Scholar 

  33. Dukelsky, J., Esebbag, C., Schuck, P.: . Phys. Rev. Lett. 87, 066403 (2001). https://link.aps.org/doi/10.1103/PhysRevLett.87.066403

    Article  ADS  Google Scholar 

  34. Ortiz, G., Somma, R., Dukelsky, J., Rombouts, S.: . Nucl. Phys. B 707, 421 (2005). ISSN 0550-3213. http://www.sciencedirect.com/science/article/pii/S0550321304008879

    Article  ADS  Google Scholar 

  35. Dunning, C., Ibañez, M., Links, J., Sierra, G., Zhao, S.-Y.: . J. Stat. Mech: Theory Exp. 2010, P08025 (2010). http://stacks.iop.org/1742-5468/2010/i=08/a=P08025

    Article  Google Scholar 

  36. Rombouts, S. M. A., Dukelsky, J., Ortiz, G.: . Phys. Rev. B 82, 224510 (2010). https://link.aps.org/doi/10.1103/PhysRevB.82.224510

    Article  ADS  Google Scholar 

  37. Marquette, I., Links, J.: . Nucl. Phys. B 866, 378 (2013). ISSN 0550-3213. http://www.sciencedirect.com/science/article/pii/S0550321312005056

    Article  ADS  Google Scholar 

  38. Read, N., Green, D.: . Phys. Rev. B 61, 10267 (2000). https://link.aps.org/doi/10.1103/PhysRevB.61.10267

    Article  ADS  Google Scholar 

  39. Sato, M., Takahashi, Y., Fujimoto, S.: . Phys. Rev. B 82, 134521 (2010). http://link.aps.org/doi/10.1103/PhysRevB.82.134521

    Article  ADS  Google Scholar 

  40. Anderson, P. W.: . Phys. Rev. 112, 1900 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  41. Barankov, R. A., Levitov, L. S., Spivak, B. Z.: . Phys. Rev. Lett. 93, 160401 (2004)

    Article  ADS  Google Scholar 

  42. Dzero, M., Yuzbashyan, E. A., Altshuler, B. L.: . Europhys. Lett. 85, 20004 (2008)

    Article  ADS  Google Scholar 

  43. Scaramazza, J. A., Smacchia, P., Yuzbashyan, E. A.: . Phys. Rev. B 99, 054520 (2019). https://link.aps.org/doi/10.1103/PhysRevB.99.054520

    Article  ADS  Google Scholar 

  44. Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., Jarillo-Herrero, P.: . Nature 556, 43 EP (2018). https://doi.org/10.1038/nature26160

    Article  ADS  Google Scholar 

  45. Kennes, D. M., Lischner, J., Karrasch, C.: . Phys. Rev. B 98, 241407 (2018). https://link.aps.org/doi/10.1103/PhysRevB.98.241407

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Emil Yuzbashyan for his comments on the manuscript and numerous stimulating discussions.

Funding

This study was financially supported by the National Science Foundation grant NSF-DMR-1506547. The work of one of us (M.D.) was financially supported in part by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0016481.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar A. Kirmani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Integrals of Motion for the Extended d + id Model

Appendix: Integrals of Motion for the Extended d + id Model

In order to derive the integrals of motion, we use the method of Lax construction. The components of the Lax vector \({\vec L}(u)\) (u is a parameter) are given by (4.1) in the main text. These quantities satisfy the algebra

$$ \begin{array}{@{}rcl@{}} \{L^+(u),L^-(v)\}&=&-2\left[\frac{uL^z(u)-vL^z(v)}{u-v}\right], \\ \{L^z(u),L^+(v)\}&=&-\left[\frac{uL^{+}(u)-vL^{+}(v)}{u-v}\right], \\ \{L^z(u),L^-(v)\}&=&-\left[\frac{uL^{-}(u)-vL^{-}(v)}{u-v}\right]. \end{array} $$
(A1)

Note that all three commutation relations retain the same form as in the s- and chiral p-wave cases.

Our main task now is to define the “Casimir” of the Lax vector, L2(u), which will be conserved by the evolution. The dynamics of the Lax vector components is described by the following equations which can be obtained from the equations of motion for the pseudospins together with (4.1). For the dynamics of \(\vec {L}(u)\), we find

$$ \begin{array}{@{}rcl@{}} \frac{d{\vec{L}}}{dt}&=& {\det} \left[\begin{array}{lll} \hat{x} & \hat{y} & \hat{z} \\ -2u{\Delta}_x & -2u{\Delta}_y & u\left( 1-\frac{G}{\nu_F^{-1}}\sum\limits_{\mathbf{p}}\varepsilon_{\mathbf{p}} S_{\mathbf{p}}^z\right) \\ L^x(u) & L^y(u) & L^z(u) \end{array}\right]\\ \end{array} $$
(A2)

where \(\vec {L}\equiv \hat {x}L^{x}+\hat {y}L^{y}+\hat {z}L^{z}\) and L± = Lx ±iLy. It is easy to see that quantity—the Lax norm—

$$ {L_2(u)= L^+(u)L^{-}(u)+\left[L^z(u)\right]^2 } $$
(A3)

is conserved by the evolution, i.e.,

$$ {\frac{dL_2(u)}{dt}=0.} $$
(A4)

In addition, the Poisson bracket which involves L2(u) is

$$ \{L_2(u),L_2(v)\}=0. $$
(A5)

We will use this relation to show that the Hamiltonian (2.1) is exactly integrable.

To show that number of the integrals of motion equals exactly to the number of the degrees of freedom, let us introduce the discreet mesh of momenta

$$ \varepsilon_j=k_j^2/2, \quad (j=1,...,N) $$
(A6)

so that summation over the discreet energy levels εj in the continuum limit becomes

$$ \sum\limits_{j=1}^Nf(\varepsilon_j)\to\nu_F\int\limits_0^{{k_{\Lambda} ^2}/{2}}f(\varepsilon) d\varepsilon, $$
(A7)

where \(\nu _{F}=\frac {\mathcal {A}}{8\pi }\) is the two-dimensional single-particle density of states at the Fermi level. Hamiltonian in (2.5) can now be written as a spin chain

$$ H=\sum\limits_j\varepsilon_j2s_j^z-g\sum\limits_j\varepsilon_js_j^+\sum\limits_l\varepsilon_ls_l^- -g\sum\limits_j\varepsilon_js_j^z\sum\limits_l\varepsilon_ls_l^z $$
(A8)

and g = GνF. With these conventions, the pseudospins are normalized:

$$ \left( {\vec s}_j\right)^2=\frac{1}{4}. $$
(A9)

For the Lax norm (A3), we find

$$ \begin{array}{@{}rcl@{}} L_2(u)&=&\sum\limits_{j=1}^{N}\sum\limits_{l=1}^{N}\frac{\varepsilon_j\varepsilon_l\left( s_j^{+}s_l^{-}+s_j^zs_l^z\right)}{(\varepsilon_j-u)(\varepsilon_l-u)}+\frac{2}{ug}\sum\limits_{j=1}^N\frac{\varepsilon_js_j^z}{\varepsilon_j-u}\\ &&+\frac{1}{u^2g^2}\\ &=&\sum\limits_{j=1}^N\frac{H_j}{u-\varepsilon_j}+\frac{1}{4}\sum\limits_{j=1}^N\frac{\varepsilon_j^2}{(u-\varepsilon_j)^2}+\frac{J_z}{gu}+\frac{1}{u^2g^2},\\ \end{array} $$
(A10)

where Hj denotes the Hamiltonian

$$ H_j=-\frac{2s_j^z}{g}+\sum\limits_{l\not=j}\frac{\varepsilon_j\varepsilon_l}{\varepsilon_j-\varepsilon_l}\left( s_j^+s_l^-+s_j^-s_l^++2s_j^zs_l^z\right) $$
(A11)

and Jz gives the total pseudospin projection on z-axis

$$ J_z=2\sum\limits_{j=1}^Ns_j^z=\text{const}. $$
(A12)

Since L2(u) is conserved by the evolution so that {L2(u),Hj} = 0, (A5) implies that {Hi,Hj} = 0, i.e., Hi’s are mutually conserved. There are N independent Hj’s in a system of N spins. Therefore, we have identified N integrals of motion for a system of N spins. Furthermore, our initial Hamiltonian (A8) can be expressed in terms of Hj’s as follows

$$ {H=-g\sum\limits_{j=1}^N \varepsilon_j H_j}+\textrm{const.} $$
(A13)

This equation means that H Poisson commutes with L2(u) and we have identified all integrals of motion. Hence, the extended d + id model is exactly integrable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirmani, A.A., Dzero, M. Non-adiabatic Dynamics in d + id-Wave Fermionic Superfluids. J Supercond Nov Magn 32, 3473–3481 (2019). https://doi.org/10.1007/s10948-019-5133-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-5133-1

Keywords

Navigation