Skip to main content
Log in

Photonic Band Gap Properties of One-dimensional Generalized Fibonacci Photonic Quasicrystal Containing Superconductor Material

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, we theoretically investigate the transmission properties of one-dimensional (1D) Fibonacci photonic quasicrystal (PQC) by using the transfer matrix modeling (TMM) method. The PQC structure is composed of alternated layers of isotropic dielectric (SiO2) and a high-Tc superconductor (YBCO). Frequency-dependent dispersion formula according to the two-fluid Gorter–Casimir theory has been adopted to describe the optical response of the superconducting material. Within the framework of the TMM method, we studied the effect of many parameters such as the thicknesses of the dielectric and superconductor layers, Fibonacci lattice parameters, and the operating temperature on the transmission behaviors of the PQC structure. Our numerical results reveal the transmission cutoff frequency can be tuned efficiently by the operating temperature as well as by the thicknesses of the constituent materials. We found that increasing the temperature and the angle of incidence, maintaining materials thicknesses constant, there is a shift of the cutoff frequency to lower frequency values. Nevertheless, this cutoff frequency is shifted to higher values with increasing the superconductor layer thickness. Moreover, we found that the width and the number of the photonic bandgaps can be controlled by order of Fibonacci sequence. Our results are promising for the design of tunable filtering devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Joannopoulos, J.D.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  2. Inoue, K., Ohtaka, K.: Photonic Crystals: Physics, Fabrication, and Applications. Springer, Berlin (2004)

    Book  Google Scholar 

  3. Sukhoivanov, I.A., Guryev, I.V.: Photonic Crystals Physics and Practical Modeling. Springer-Verlag, Berlin (2010)

    Google Scholar 

  4. Knight, J.C., Broeng, J., Birks, T.A., Russell, P.S.J.: Science. 282, 1476 (1998)

    Article  Google Scholar 

  5. Painter, O., Lee, R.K., Scherer, A., Yariv, A., O’Brian, J.D., Dapkus, P.D., Kim, I.: Science. 284, 1819 (1999)

    Article  Google Scholar 

  6. Zhan, C., Zhang, D., Zhu, D., Wang, D., Li, Y., Li, D., Lu, Z., Zhao, L., Nie, Y.: J. Opt. Soc. Am. B. 19, 369 (2002)

    Article  ADS  Google Scholar 

  7. Liu, Y., Deng, L., Yi, L.: Opt. Commun. 333, 159 (2014)

    Article  ADS  Google Scholar 

  8. Qiao, F., Zhang, C., Wan, J., Zi, J.: Appl. Phys. Lett. 77, 3698 (2000)

    Article  ADS  Google Scholar 

  9. Zhang, Y., Wu, Z., CAO, Y., Zhang, H.: Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal. Opt. Commun. 338, 168–173 (2015)

    Article  ADS  Google Scholar 

  10. Singh, B.K., Thapa, K.B., Pandey, P.C.: Optical reflectance and omnidirectional bandgaps in Fibonacci quasicrystals type 1-D multilayer structures containing exponentially graded material. Opt. Commun. 297, 65–73 (2013)

    Article  ADS  Google Scholar 

  11. Gharamaleki, S.Z.: Narrowband optical filter design for DWDM communication applications based on generalized aperiodic Thue Morse structures. Opt. Commun. 284, 579–584 (2011)

    Article  ADS  Google Scholar 

  12. Singh, B.K., Pandey, P.C.: Influence of graded index materials on the photonic localization in one-dimensional quasiperiodic (Thue–Mosre and Double-Periodic) photonic crystals. Opt. Commun. 333, 84–91 (2014)

    Article  ADS  Google Scholar 

  13. Yue, C., Tan, W., Liu, J.: Photonic band gap properties of one-dimensional Thue-Morse all-dielectric photonic quasicrystal. Superlattice. Microst. 117, 252–259 (2018)

    Article  ADS  Google Scholar 

  14. Trabelsi, Y., Ben Ali, N., Bouazzi, Y., Kanzari, M.: Microwave transmission through one-dimensional hybrid quasi-regular (Fibonacci and Thue-Morse)/periodic structures. Photonic Sensors. 3, 246 (2013)

    Article  ADS  Google Scholar 

  15. Sahel, S., Amri, R., Bouaziz, L., Gamra, D., Lejeune, M., Benlahsen, M., Bouchriha, H.: Optical filters using cantor quasi-periodic one dimensional photonic crystal based on Si/SiO2. Superlattice. Microst. 97, 429–438 (2016)

    Article  ADS  Google Scholar 

  16. Kanzari, M., Bouzidi, A., Rezig, B.: Interferential polychromatic filters. Eur. Phys. J. B. 36, 431–443 (2003)

    Article  ADS  Google Scholar 

  17. Roshan Entezar, S.: Photonic crystal wedge as a tunable multichannel filter. Superlattice. Microst. 82, 33–39 (2015)

    Article  ADS  Google Scholar 

  18. Trabelsi, Y., Bouazzi, Y., Ben Ali, N., Kanzari, M.: Narrow stop band optical filter using one-dimensional regular Fibonacci/Rudin Shapiro photonic quasicrystals. Opt. Quant. Electron. 48(1), (2016)

  19. Zamani, M.: Spectral properties of all superconducting photonic crystals comprising pair of high-high, low-low or high-low temperature superconductors. Phys. C. 520, 42–46 (2016)

    Article  Google Scholar 

  20. Srivastava, S.K., Aghajamali, A.: Investigation of reflectance properties in 1D ternary annular photonic crystal containing semiconductor and high-Tc superconductor. J. Supercond. Nov. Magn. 29, 1423–1431 (2016)

    Article  Google Scholar 

  21. Rahimi, H.: Analysis of photonic spectra in Thue-Morse, double-period and Rudin-Shapiro quasiregular structures made of high temperature superconductors in visible range. Opt. Mater. 57, 264–271 (2016)

    Article  ADS  Google Scholar 

  22. Chang, T.W., Chien, J.R.C., Wu, C.J.: Magnetic-field tunable multichannel filter in a plasma photonic crystal at microwave frequencies. Appl. Opt. 55(4), 943 (2016)

    Article  ADS  Google Scholar 

  23. Wu, C.-J., Liao, J.-J., Chang, T.W.: Tunable multilayer Fabry-Perot resonator using electro-optical defect layer. J. Electromagn. Waves Appl. 24, 531 (2010)

    Google Scholar 

  24. Liu, B., Johnson, S.G., Joannopoulos, J.D., Lu, L.: Generalized gilat–raubenheimer method for density-of states calculation in photonic crystals. J. Opt. 20, 044005 (2018)

    Article  ADS  Google Scholar 

  25. Aly, A.H., Mohamed, D., Elsayed, H.A., Vigneswaran, D.: Optical properties of new type of superconductor-semiconductor metamaterial photonic crystals. J. Supercond. Nov. Magn. 31(11), 3453–3457 (2018)

    Article  Google Scholar 

  26. Gómez-Urrea, H.A., Escorcia-Garcia, J., Duque, C.A., Mora-Ramos, M.E.: Analysis of light propagation in quasiregular and hybrid Rudin-Shapiro one-dimensional photonic crystals with superconducting layers. Photonics Nanostruct. Fundam. Appl. 27, (2017)

    Article  ADS  Google Scholar 

  27. Barvestani, J.: Omnidirectional narrow bandpass filters based on one-dimensional superconductor dielectric photonic crystal heterostructures. Physica B. 457, 218–224 (2015)

    Article  ADS  Google Scholar 

  28. Zhang, H.-F., Liu, S.-B., Kong, X.-K., Bian, B.-R., Ma, B.: Enhancement of omnidirectional photonic bandgaps in one-dimensional superconductor dielectric photonic crystals with a staggered structure. J. Supercond. Nov. Magn. 26, 77–85 (2013)

    Article  Google Scholar 

  29. Zhang, H.F., Liu, S.B., Yang, H.: Omnidirectional photonic band gap in one-dimensional ternary superconductor-dielectric photonic crystals based on a new Thue-Morse aperiodic structure. J. Supercond. Nov. Magn. 27, 41–52 (2014)

    Article  Google Scholar 

  30. Wu, J.J., Gao, J.X.: Low temperature sensor based on one dimensional photonic crystals with a dielectrice superconducting pair defect. Optik. 126, 5368–5371 (2015)

    Article  ADS  Google Scholar 

  31. Wu, J., Gao, J.: Analysis of temperature-dependent optical properties in 1D ternary superconducting photonic crystal with mirror symmetry. J. Supercond. Nov. Magn. 28, 1971–1976 (2015)

    Article  Google Scholar 

  32. Ali, N.B.: Optical Fabry–Perot filters using hybrid Periodic, Fibonacci and Cantor photonic structures. Nano Commun. Networks. 13, 34–42 (2017)

    Article  Google Scholar 

  33. Baraket, Z., Zaghdoudi, J., Kanzari, M.: Investigation of the 1D symmetrical linear graded superconductor dielectric photonic crystals and its potential applications as an optimized low temperature sensors. Opt. Mater. 64, 147–151 (2017)

    Article  ADS  Google Scholar 

  34. Bouazzi, Y., Kanzari, M.: Optical Fabry–Perot filter based on photonic band gap quasi-periodic one-dimensional multilayer according to the definite Rudin–Shapiro distribution. Opt. Commun. 285(12), 2774–2779 (2012)

    Article  ADS  Google Scholar 

Download references

Funding

The authors are thankful to the Deanship of Scientific Research- Research Center at King Khalid University in Saudi Arabia for funding this research work (code number: G.R.P-374-1439/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Belhadj.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trabelsi, Y., Ben Ali, N., Belhadj, W. et al. Photonic Band Gap Properties of One-dimensional Generalized Fibonacci Photonic Quasicrystal Containing Superconductor Material. J Supercond Nov Magn 32, 3541–3547 (2019). https://doi.org/10.1007/s10948-019-5099-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-5099-z

Keywords

Navigation