Skip to main content
Log in

Enhancement of Omnidirectional Photonic Bandgaps in One-Dimensional Superconductor–Dielectric Photonic Crystals with a Staggered Structure

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, the properties of the omnidirectional photonic bandgap (OBG) realized by one-dimensional (1D) photonic crystals with a staggered structure which is composed of superconductor and isotropic dielectric have been theoretically investigated by the transfer matrix method (TMM). From the numerical results, it has been shown that such OBG is insensitive to the incident angle and the polarization of electromagnetic wave (EM wave), and the frequency range and central frequency of OBG can be tuned by the ambient temperature of system, the average thickness of superconductor layer, the average thickness of dielectric layer, and staggered parameters, respectively. The bandwidth of OBG can be notably enlarged with increasing average thickness and staggered parameter of superconductor layer. Moreover, the frequency range of OBG can be narrowed with increasing the average thickness, staggered parameter of dielectric layer, and ambient temperature, respectively. The damping coefficient of superconductor layer has no effect on the bandwidth of OBG under low-temperature conditions. It is shown that 1D superconductor–dielectric photonic crystals (SDPCs) have a superior feature in the enhancement of frequency range of OBG. This kind of OBG has potential applications in filters, microcavities, and fibers, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yablonovitch, E.: Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  2. John, S.: Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  ADS  Google Scholar 

  3. Leung, K.M., Chang, Y.F.: Phys. Rev. Lett. 65, 2646–2649 (1990)

    Article  ADS  Google Scholar 

  4. Zhang, Z., Satpathy, S.: Phys. Rev. Lett. 65, 2650–2653 (1990)

    Article  ADS  Google Scholar 

  5. Yablonovitch, E., Gmitter, T.J., Leung, K.M.: Phys. Rev. Lett. 67, 2295–2298 (1991)

    Article  ADS  Google Scholar 

  6. Li, Z.Y., Xia, Y.: Phys. Rev. B 64, 153108 (2001)

    Article  ADS  Google Scholar 

  7. Hart, S.D., Maskaly, G.R., Temelkuran, B., Prideaux, P.H., Joannopulos, J.D., Fink, Y.: Science 296, 510–513 (2002)

    Article  ADS  Google Scholar 

  8. Winn, J.N., Fink, Y., Fan, S., Joannopulos, J.D.: Opt. Lett. 23, 1573–1575 (1998)

    Article  ADS  Google Scholar 

  9. Fan, S., Villeneuve, P.R., Joannopoulos, J.D.: Phys. Rev. B 54, 11245–11252 (1996)

    Article  ADS  Google Scholar 

  10. Johnson, S.G., Joannopoulos, J.D.: Appl. Phys. Lett. 77, 3490–3492 (2000)

    Article  ADS  Google Scholar 

  11. Qiang, H., Jiang, L., Jia, W., Li, X.: Optik 122, 345–348 (2011)

    Article  ADS  Google Scholar 

  12. Hart, S.D., Maskaly, G.R., Temelkuran, B., Prideaux, P.H., Joannopulos, J.D., Fink, Y.: Science 296, 510–513 (2002)

    Article  ADS  Google Scholar 

  13. Winn, J.N., Fink, Y., Fan, S., Joannopulos, J.D.: Opt. Lett. 23, 1573–1575 (1998)

    Article  ADS  Google Scholar 

  14. Kamp, M., Happ, T., Mahnkopf, S., Duan, G., Anand, S., Forchel, A.: Physica E 21, 802–808 (2004)

    Article  ADS  Google Scholar 

  15. Lepeshkin, N.N., Schweinsberg, A., Piredda, G., Bennink, R.S., Boyd, R.W.: Phys. Rev. Lett. 93, 123902 (2004)

    Article  ADS  Google Scholar 

  16. Zhang, H.F., Ma, L., Liu, S.B.: Acta Phys. Sin. 58, 1071–1076 (2009)

    Google Scholar 

  17. Zhang, H.F., Liu, S.B., Kong, X.K.: Acta Phys. Sin. 60, 055209 (2011)

    Google Scholar 

  18. Zhang, H.F., Liu, S.B., Kong, X.K.: Acta Phys. Sin. 60, 025215 (2011)

    Google Scholar 

  19. Chen, Y.B., Zhang, C., Zhu, Y.Y., Zhu, S.N., Ming, N.B.: Mater. Lett. 55, 12–16 (2002)

    Article  Google Scholar 

  20. Thapa, K.B., Srivastava, S., Tiwai, S.: J. Supercond. Nov. Magn. 23, 517 (2010)

    Article  Google Scholar 

  21. Lyubchanskii, I.L., Dadonenkova, N.N., Zabolotin, A.E., Lee, Y.P., Rasing, T.: J. Opt. A, Pure Appl. Opt. 11, 114014 (2009)

    Article  ADS  Google Scholar 

  22. Wu, C.J.: J. Electromagn. Waves Appl. 23, 1113–1122 (2009)

    Google Scholar 

  23. Aly, A.H., Ryu, S.W., Hsu, H.T., Wu, C.J.: Mater. Chem. Phys. 113, 382–384 (2009)

    Article  Google Scholar 

  24. Dadoenkova, N.N., Zabolotin, A.E., Lyubchanskii, I.L., Lee, Y.P., Rasing, Th.: J. Appl. Phys. 108, 093117 (2010)

    Article  ADS  Google Scholar 

  25. Chen, M.S., Wu, C.J., Yang, T.J.: Appl. Phys. A 104, 913 (2011)

    Article  ADS  Google Scholar 

  26. Chang, T.W., Wu, C.J.: J. Supercond. Nov. Magn. 24, 1315 (2011)

    Article  Google Scholar 

  27. Li, C.Z., Liu, S.B., Kong, X.K., Bian, B.R., Zhang, X.Y.: Appl. Opt. 50, 2370 (2011)

    Article  Google Scholar 

  28. Dai, X.Y., Xiang, Y.J., Wen, S.C.: Prog. Electromagn. Res. 120, 17–34 (2011)

    Google Scholar 

  29. Wang, L.G., Chen, H., Zhu, S.Y.: Phys. Rev. B 70, 254012 (2004)

    Google Scholar 

  30. Jiang, H.T., Chen, H., Li, H.Q., Zhang, Y.W., Zi, J., Zhuo, S.Y.: Phys. Rev. E 69, 066607 (2004)

    Article  ADS  Google Scholar 

  31. Tian, H., Ji, Y., Li, C., Liu, H.: Opt. Commun. 275, 83–89 (2007)

    Article  ADS  Google Scholar 

  32. Han, P., Wang, H.: J. Opt. Soc. Am. B 20, 1996–2001 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  33. Negro, L.D., Oton, C.J., Gaburro, Z., Pavesi, L., Johson, P., Lagendijk, A., Righini, R., Colocci, M., Wiersma, D.S.: Phys. Rev. Lett. 90, 055501 (2003)

    Article  ADS  Google Scholar 

  34. Tinkham, M.: Introduction to Superconductivity, 2nd edn. McGraw-Hill, New York (1996)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the supports from the Chinese Natural Science Foundation (Grant No. 60971122), in part by Jiangsu Province Science Foundation (Grant No. BK2011727), in part by the Open Research Program in China’s State Key Laboratory of Millimeter Waves (No. K201103), in part by the Funding of Jiangsu Innovation Program for Graduate Education (Grant No. CXZZ11_0211&CXZZ11_0210) and Funding for Outstanding Doctoral Dissertation in NUAA (Grant No. BCXJ11-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Bin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, HF., Liu, SB., Kong, XK. et al. Enhancement of Omnidirectional Photonic Bandgaps in One-Dimensional Superconductor–Dielectric Photonic Crystals with a Staggered Structure. J Supercond Nov Magn 26, 77–85 (2013). https://doi.org/10.1007/s10948-012-1712-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1712-0

Keywords

Navigation