Skip to main content
Log in

A Novel Thermal Decomposition Approach for the Synthesis and Properties of Superparamagnetic Nanocrystalline NiFe2O4 and Its Antibacterial, Electrocatalytic Properties

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, we report superparamagnetic nanocrystalline NiFe2O4 material was synthesized by using a simple, novel thermal decomposition approach in a controlled manner. However, using ethylene glycol as solvent yielded well dispersed NiFe2O4 nanoparticles. The synthesized NiFe2O4 nanoparticles are characterized by various analytical measurements, and their corresponding optical, morphological, structural, magnetic, and thermal properties of these nanoparticles have been investigated. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results indicated that the synthesized nanoparticles are in single nanocrystalline cubic phase and the particles are in spherical shaped with an average diameter of 12.3 + 0.69 nm. The magnetic properties of the nanoparticles are studied by vibrating sample magnetometer (VSM) and the results exhibited superparamagnetism at room temperature with the magnetic saturation of (Ms) 36.8 emu/g. Furthermore, the antibacterial activities of the synthesized material was investigated on two Gram-negative (Escherichia coli, Acinetobacter baumannii) and one Gram-positive (Staphylococcus aureus) bacterial strains. The biological results indicated that the synthesized magnetic nanocrystalline NiFe2O4 sample has shown an excellent antibacterial activity against all examined bacteria. In addition, the electrocatalytic performances of the fabricated electrode materials were investigated by cyclic voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lynda, I.J.C., Durka, M., Dinesh, A., Manikandan, A., Jaganathan, S.K., Baykal, A., Antony, S.A.: Enhanced magneto-optical and photocatalytic properties of ferromagnetic Mg1−YNiYFe2O4 (0.0 ≤ Y ≤ 1.0) spinel nano-ferrites. J. Supercond. Nov. Magn. 31, 3637–3647 (2018)

    Google Scholar 

  2. Silambarasu, A., Manikandan, A., Balakrishnan, K.: Room-temperature superparamagngetism and enhanced photocatalytic activity of magnetically reusable spinel ZnFe2O4 nanocatalysts. J. Supercond. Nov. Magn. 30, 2631–2640 (2017)

    Google Scholar 

  3. Asiri, A., Sertkol, M., Güngüneş, H., Amir, M., Manikandan, A., Ercan, I., Baykal, A.: The temperature effect on magnetic properties of NiFe2O4 nanoparticles. J Inorg Organomet P. 28, 1587–1597 (2018)

    Google Scholar 

  4. Maria Lumina Sonia, M., Anand, S., Blessi, S., Pauline, S., Manikandan, A.: Effect of surfactants (PVB/EDTA/CTAB) assisted sol-gel synthesis on structural, magnetic and dielectric properties of NiFe2O4 nanoparticles. Ceram. Int. 44, 22068–22079 (2018)

    Google Scholar 

  5. Hema, E., Manikandan, A., Gayathri, M., Durka, M., Arul, A.S., Venkatraman, B.R.: The role of Mn2+-doping on structural, morphological, optical, magnetic and catalytic properties of spinel ZnFe2O4 nanoparticles. J Nanosci-Nanotechno. 16, 5929–5943 (2016)

    Google Scholar 

  6. Jayasree, S., Manikandan, A., Uduman, M.A.M., Barathiraja, C., Antony, S.A.: Comparative study of combustion methods, opto-magnetic and catalytic properties of spinel CoAl2O4 nano- and microstructures. Eng. Med. 7, 672–682 (2015)

    Google Scholar 

  7. Burda, C., Chen, X.B., Narayanan, R., El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005)

    Google Scholar 

  8. Guo, P., Cui, L., Wang, Y., Lv, M., Wang, B., Zhao, X.S.: Facile synthesis of ZnFe2O4 nanoparticles with tunable magnetic and sensing properties. Langmuir. 29, 8997–9003 (2013)

    Google Scholar 

  9. Mathew, D.S., Juang, R.S.: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51–65 (2007)

    Google Scholar 

  10. Ge, J.P., Hu, Y.X., Biasini, M., Beyerann, W.P., Yin, Y.D.: Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem. Int. Ed. 46, 4342–4345 (2007)

    Google Scholar 

  11. Shobana, M.K., Sankar, S.: Structural, thermal and magnetic properties of Ni1-xMnxFe2O4 nanoferrites. J. Magn. Magn. Mater. 321, 2125–2128 (2009)

    ADS  Google Scholar 

  12. Manikandan, A., Judith Vijaya, J., John Kennedy, L.: Comparative investigation of NiO nano- and microstructures for structural, optical and magnetic properties. Phys. E. 49(117–123), 117 (2013)

    Google Scholar 

  13. Asiri, S., Sertkol, M., Guner, S., Gungunes, H., Batoo, K.M., Saleh, T.A., Sozeri, H., Almessiere, M.A., Manikandan, A., Baykal, A.: Hydrothermal synthesis of CoyZnyMn1-2yFe2O4 nanoferrites: magneto optical investigation. Ceram. Int. 44, 5751–5759 (2018)

    Google Scholar 

  14. Silambarasu, A., Manikandan, A., Balakrishnan, K., Jaganathan, S.K., Manikandan, E., Aanand, J.S.: Comparative study of structural, morphological, magneto-optical and photo-catalytic properties of magnetically reusable spinel MnFe2O4 nano-catalysts. J Nanosci-Nanotechno. 18, 3523–3531 (2018)

    Google Scholar 

  15. Muthusamy, A., Arunkumar, M., Kannapiran, N., Meena, S.S., Yusuf, S.M.: Electrical and magnetic properties of poly(m-phenylenediamine)/ NiFe2O4 nanocomposites. J. Mater. Sci. Mater. Electron. 28, 15754–15761 (2017)

    Google Scholar 

  16. Ahlawat, A., Sathe, V.G.: Raman study of NiFe2O4 nanoparticles, bulk and films: effect of laser power. J. Raman Spectrosc. 42, 1087–1094 (2011)

    ADS  Google Scholar 

  17. Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S., Muthamizhchelvan, C.: Synthesis and characterization of nickel ferrite magnetic nanoparticles. Mater. Res. Bull. 46, 2208–2211 (2011)

    Google Scholar 

  18. Springer, V., Pecini, E., Avena, M.: Magnetic nickel ferrite nanoparticles for removal of dipyrone from aqueous solutions. J. Environ. Chem. Eng. 4, 3882–3890 (2016)

    Google Scholar 

  19. Huang, Y., Sudibya, H.G., Chen, P.: Detecting metabolic activities of bacteria using a simple carbon nanotube device for high-throughput screening of anti-bacterial drugs. Biosens. Bioelectron. 26, 4257–4261 (2011)

    Google Scholar 

  20. Joshi, S., Kumar, M., Chhoker, S., Srivastava, G., Jewariya, M., Singh, V.N.: Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 1076, 55–62 (2014)

    ADS  Google Scholar 

  21. Nejati, K., Zabihi, R.: Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem. Cent. J. 30, 6–23 (2012)

    Google Scholar 

  22. Zhang, Y., Rimal, G., Tang, J., Dai, Q.: Synthesis of NiFe2O4 Nanoparticles for Energy and Environment Applications. Mater. Res. Express in press. 5, (2018). https://doi.org/10.1088/2053-1591/aaacde

  23. Ishaq, K., Saka, A.A., Kamardeen, A.O., Mohammed Is’haq Alhassan, A.A., Abdullahi, H.: Characterization and antibacterial activity of nickel ferrite doped α-alumina nanoparticle, Engineering Science and Technology, an International Journal xxx xxx–xxx (2016)

  24. Allafchian, A., Hossein Jalali, S.A., Bahramian, H., Ahmadvand, H.: Preparation, characterization and antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite. J. Magn. Magn. Mater. 404, 14–20 (2016)

    ADS  Google Scholar 

  25. Elayakumar, K., Manikandan, A., Dinesh, A., Thanrasu, K., Kanmani Raja, K., Thilak Kuma, R., Slimani, Y., Jaganathan, S.K., Baykal, A.: Enhanced magnetic property and antibacterial biomedical activity of Ce3+ doped CuFe2O4 spinel nanoparticles synthesized by sol-gel method. J. Magn. Magn. Mater. 476, 157–165 (2019)

    ADS  Google Scholar 

  26. Manikanandan, A., Sridhar, R., Antony, S.A., Ramakrishna, S.: A simple Aloe vera plant extracted microwave and conventional combustion method: morphological, optical, magnetic and catalytic properties of CoFe.2O4 nanostructures. J. Mol. Struct. 1076, 188–200 (2014)

    ADS  Google Scholar 

  27. Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S., Muthamizhchelvan, C.: Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol-gel auto- combustion method. Mater. Res. Bull. 46, 2204–2207 (2016)

    Google Scholar 

  28. Liua, H.L., Hou, P., Zhang, W.X., Wu, J.H.: Synthesis of monosized core–shell Fe3O4/Au multifunctional nanoparticles by PVP-assisted nanoemulsion process. Colloids Surf. A: Physicochem. Eng. Aspects. 356, 21–27 (2010)

    Google Scholar 

  29. Deb, P., Basumallick, A., Das, S.: Controlled synthesis of monodispersed superparamagnetic nickel ferrite nanoparticles. Solid State Commun. 142, 702–705 (2007)

    ADS  Google Scholar 

  30. Khan, E.M., Alam, F., Parveen, A., Naqvi, A.H.: Structural, optical and dielectric properties of alkaline earth metal (Sr0.05, Mg0.05and Ba0.05) doped CaF2 nanoparticles and their microscopic analysis. J. Adv. Microsc. Res. 8, 45–52 (2013)

    Google Scholar 

  31. Zhou, Z.H., Xue, J.M., Wang, J., Chan, H.S.O., Yu, T., Shen, Z.X.: NiFe2O4 nanoparticles formed in situ in silica matrix by mechanical activation. J. Appl. Phys. 91, 6015–6020 (2002)

    ADS  Google Scholar 

  32. Barathiraja, C., Manikandan, A., Uduman Mohideen, A.M., Jayasree, S., Arul Antony, S.: Magnetically recyclable spinel MnxNi1−xFe2O4 (x = 0.0–0.5) nano photocatalysts: structural, morphological and opto-magnetic properties. J. Supercond. Novel Magn. 2, 477–486 (2016)

    Google Scholar 

  33. Hema, E., Manikandan, A., Karthika, P., Antony, S.A., Venkatraman, B.R.: A novel synthesis of zn2+-doped cofe2o4 spinel nanoparticles: structural, morphological, opto-magnetic and catalytic properties. J. Supercond. Novel Magn. 28, 2539–2552 (2015)

    Google Scholar 

  34. Manikandan, A., Hema, E., Durka, M., Seevakan, K., Alagesan, T., Antony, S.A.: Room temperature ferromagnetism of magnetically recyclable photocatalyst of Cu1−xMnxFe2O4-TiO2 (0.0≤ x≤ 0.5) nanocomposites. J. Supercond. Novel Magn. 28, 1783–1795 (2015)

    Google Scholar 

  35. Manikandan, A., Durka, M., Antony, S.A.: A novel synthesis, structural, morphological, and opto-magnetic characterizations of magnetically separable spinel CoxMn1−xFe2O4 (0≤ x≤ 1) Nano-catalysts. J. Supercond. Nov. Magn. 27, 2841–2857 (2014)

    Google Scholar 

  36. Meher, S.K., Ranga Rao, G.: Effect of microwave on the nanowire morphology, optical, magnetic, and pseudo capacitance behavior of Co3O4. J. Phys. Chem. C. 115, 25543–25556 (2011)

    Google Scholar 

  37. Cabo, M., Pellicer, E., Rossinyol, E., Estrader, M., Ortega, A.L., Nogues, J., Castell, O., Surinach, S., Baro, M.D.: Synthesis of compositionally grade nanocast NiO/NiCo2O4/Co3O4 mesoporous composites with tunable magnetic properties. J. Mater. Chem. 20, 7021–7028 (2010)

    Google Scholar 

  38. Jacobs, I.S., Bean, C.P.: In: Rado, G.T., Suhl, H. (eds.) Fine Particles, Thin Films and Exchange Anisotropy. Magnetism, vol. III, pp. 271–350. Academi Press, New York/London (1963)

    Google Scholar 

  39. Shi, Z., Zhang, J., Gao, D., Zhu, Z., Yang, Z., Zhang, Z., Xue, D.: Magnetic resonance of the NiFe2O4 nanoparticles in the gigahertz range. Nanoscale Res. Lett. 8, 404 (2014)

    ADS  Google Scholar 

  40. Salavati-Niasari, M., Davar, F., Mahmoudi, T.: A simple route to synthesize nanocrystalline nickel ferrite (NiFe2O4) in the presence of octanoic acid as a surfactant. Polyhedron. 28, 1455–1458 (2009)

    Google Scholar 

  41. Sen, R., Jain, P., Patidar, R., Srivastava, S., Rana, R.S., Gupta, N.: Synthesis and characterization of nickel ferrite (NiFe2O4) nanoparticles prepared by sol-gel method. Mater. Today Proc. 2, 3750–3757 (2015)

    Google Scholar 

  42. Liu, X.M., Gao, W.L.: Preparation and magnetic properties of NiFe2O4 nanoparticles by modified pechini method. Mater. Manuf. Process. 27, 905–909 (2012)

    Google Scholar 

  43. Raid, A., Ismail, Ghassn, M., Sulaiman, Safa, A., Abdulrahman, Thorria, R., Marzoog: Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater. Sci. Eng. C. 53, 286–297 (2015)

    Google Scholar 

  44. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H., Mohamad, D.: Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7, 219–242 (2015)

    Google Scholar 

  45. Chitra, K., Reena, K., Manikandan, A., Arul Antony, S.: Antibacterial studies and effect of poloxamer on gold nanoparticles by Zingiber officinale extracted green synthesis. J. Nanosci. Nanotech. 15, 4984–4991 (2015)

    Google Scholar 

  46. Babitha, N., Srimathi Priya, L., Rosy Christy, S., Manikandan, A., Dinesh, A., Durka, M., Arunadevi, S.: Enhanced antibacterial activity and photo-catalytic properties of ZnO nanoparticles: Pedalium murex plant extract-assisted synthesis. J. Nanosci. Nanotech. 19, 2888–2894 (2019)

    Google Scholar 

  47. Sumithra, V., Manikandan, A., Durka, M., Jaganathan, S.K., Dinesh, A., Ramalakshmi, N., Arul Antony, S.: Simple precipitation synthesis, characterization and antibacterial activity of Mn doped ZnO nanoparticles. Adv. Sci. Eng. Med. 9, 483–488 (2017)

    Google Scholar 

  48. Cha, S.H., Hong, J., McGuffie, M., Yeom, B., VanEpps, J.S., Kotov, N.A.: Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano. 9, 9097–9105 (2015)

    Google Scholar 

  49. Lee, H., Chandu, V.V.M.G., Rana, P.J.S., Vinodh, R., Kim, S., Rapur, P., Kim, H.: Hierarchical nanostructured MnCo2O4-NiCo2O4 composite as an innovative electrode for supercapacitor applications. New J. Chem. 42, 17190 (2018). https://doi.org/10.1039/C8NJ03764G

    Article  Google Scholar 

  50. Anwar, S., Sudalai Muthu, K., Ganesh, V., Lakshminarasimhan, N.: A comparative study of electrochemical capacitive behavior of NiFe2O4 synthesized by different routes. J. Electrochem Soc. 158, A976–A981 (2011)

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Institute of Instrumentation Centre IIT Chennai for proving SEM, TEM, and TGA facilities.

Funding

L. Kiran Babu gratefully acknowledges the UGC-BSR, New Delhi, for the financial assistance in the form of RFSMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Kiran Babu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

•Superparamagnetic nanocrystalline NiFe2O4 sample was synthesized by a simple and novel thermal decomposition approach.

•High-purity single phase, controllable size and uniform shape of NiFe2O4 sample were reported.

•Nanocrystalline NiFe2O4 showed superparamagnetic behavior at room temperature.

•The antibacterial activity and electrocatalytic properties of the superparamagnetic NiFe2O4 sample were studied.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, L.K., Reddy, Y.V.R. A Novel Thermal Decomposition Approach for the Synthesis and Properties of Superparamagnetic Nanocrystalline NiFe2O4 and Its Antibacterial, Electrocatalytic Properties. J Supercond Nov Magn 33, 1013–1021 (2020). https://doi.org/10.1007/s10948-019-05262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05262-x

Keywords

Navigation