Skip to main content
Log in

Thermoelectric Effect in Two-Band Single-Junction Superconducting Rings

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Based on Ginzburg-Landau theory, we study the thermoelectric effect of two-band superconducting ring of inductance L with a microbridge structure. The phase difference of two order parameters in the ring satisfies the sine-Gordon equation, and from its soliton solution and the Josephson current-phase relation in the two-band microbridge, we obtain the analytical expression of the generated magnetic flux as a function of applied temperature gradient. Our results show that in the regime LIc > Φ0/2π with Ic the critical supercurrent in the microbridge and Φ0 = h/2e, this single-junction system will exhibit the irreversible behavior and the induced fractional flux transition can be easily observed in the typical two-band superconductor MgB2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ginzburg, V.L., Zharkov, G.F.: Thermoelectric effects in superconductors. Sov. Phys. Usp. 21, 381–404 (1978)

    ADS  Google Scholar 

  2. Ginzburg, V. L.: On thermoelectric phenomena in superconductors. Sov. Phys. JETP 8, 148 (1944)

    Google Scholar 

  3. Kresin, V. Z., Litovchenko, V. A.: Thermoelectric effect in superconductors. Sov. Phys. JETP 26, 1216–1218 (1968)

    ADS  Google Scholar 

  4. Garland, J. C., Van Harlingen, D. J.: Thermoelectric generation of flux in a bimetallic superconducting ring. Phys. Lett. A 47, 423–424 (1974)

    ADS  Google Scholar 

  5. Van Harlingen, D. J., Garland, J. C.: Thermoelectric transport effect in superconducting indium. Solid State Commun. 25, 419–422 (1978)

    ADS  Google Scholar 

  6. Van Harlingen, D. J., Heidel, D. F., Garland, J. C.: Experimental study of thermoelectricity in superconducting indium. Phys. Rev. B 21, 1842–1857 (1980)

    ADS  Google Scholar 

  7. Gibson, U. J., Pipes, P. B.: Thermomagnetic effect in a superconducting ring containing a Josephson junction. Phys. Rev. B 11, 4219–4220 (1975)

    ADS  Google Scholar 

  8. Moskalenko, V. A.: Superconductivity in metals with overlapping energy bands. Fiz. Met. Metalloved. 8, 503–513 (1959)

    Google Scholar 

  9. Suhl, H., Matthias, B. T., Walker, L. R.: Bardeen-Cooper-Schrieffer theory of superconductivity in the case of overlapping bands. Phys. Rev. Lett. 3, 552–554 (1959)

    ADS  MATH  Google Scholar 

  10. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001)

    ADS  Google Scholar 

  11. Kortus, J., Mazin, I. I., Belashchenko, K. D., Antropov, V. P., Boyer, L. L.: Superconductivity of metallic boron in MgB2. Phys. Rev. Lett. 86, 4656–4659 (2001)

    ADS  Google Scholar 

  12. An, J. M., Pickett, W. E.: Superconductivity of MgB2: covalent bonds driven metallic. Phys. Rev. Lett. 86, 4366–4369 (2001)

    ADS  Google Scholar 

  13. Kong, Y., Dolgov, O. V., Jepsen, O., Andersen, O. K.: Electron-phonon interaction in the normal and superconducting states of MgB2. Phys. Rev. B 64, 020501(R) (2001)

    ADS  Google Scholar 

  14. Bohnen, K. P., Heid, R., Renker, B.: Phonon dispersion and electron-phonon coupling in MgB2 and AlB2. Phys. Rev. Lett. 86, 5771–5774 (2001)

    ADS  Google Scholar 

  15. Liu, A. Y., Mazin, I. I., Kortus, J.: Beyond Eliashberg superconductivity in MgB2: Anharmonicity, two-phonon scattering, and multiple gaps. Phys. Rev. Lett. 87, 087005 (2001)

    ADS  Google Scholar 

  16. Brinkman, A., Golubov, A. A., Rogalla, H., Dolgov, O. V., Kortus, J., Kong, Y., Jepsen, O., Andersen, O. K.: Multiband model for tunneling in MgB2 junctions. Phys. Rev. B 65(R), 180517 (2002)

    ADS  Google Scholar 

  17. Giubileo, F., Roditchev, D., Sacks, W., Lamy, R., Thanh, D. X., Klein, J., Miraglia, S., Fruchart, D., Marcus, J., Monod, Ph: Two-gap state density in MgB2: A true bulk property or a proximity effect?. Phys. Rev. Lett. 87, 177008 (2001)

    ADS  Google Scholar 

  18. Szabȯ, P., Samuely, P., Kačmarčik, J., Klein, T., Marcus, J., Fruchart, D., Miraglia, S., Marcenat, C., Jansen, A.G.M.: Evidence for two superconducting energy gaps in MgB2 by point-contact spectroscopy. Phys. Rev. Lett. 87, 137005 (2001)

    ADS  Google Scholar 

  19. Bouquet, F., Fisher, R. A., Phillips, N. E., Hinks, D. G., Jorgensen, J. D.: Specific heat of Mg\(^{11}\textit {B}_{2}\): evidence for a second energy gap. Phys. Rev. Lett. 87, 047001 (2001)

    ADS  Google Scholar 

  20. Mazin, I. I., Kortus, J.: Interpretation of the de Haas-van Alphen experiments in MgB2. Phys. Rev. B 65(R), 180510 (2002)

    ADS  Google Scholar 

  21. Bugoslavsky, Y., Miyoshi, Y., Perkins, G. K., Berenov, A. V., Lockman, Z., MacManus-Driscoll, J. L., Cohen, L. F., Caplin, A. D., Zhai, H. Y., Paranthaman, M. P., Christen, H. M., Blamire, M.: Structure of the superconducting gap in MgB2 from point-contact spectroscopy. Supercond. Sci. Technol. 15, 526–532 (2002)

    ADS  Google Scholar 

  22. Tanaka, Y.: Soliton in two-band superconductor. Phys. Rev. Lett. 88, 017002 (2002)

    ADS  Google Scholar 

  23. Babaev, E.: Vortices with fractional flux in two-gap superconductors and in extended Faddeev model. Phys. Rev. Lett. 89, 067001 (2002)

    ADS  Google Scholar 

  24. Drozd, V. A., Gabovich, A. M., Gierlowski, P., Pekala, M., Szymczak, H.: Transport properties of bulk and thin-film MgB2 superconductors: effects of preparation conditions. Phys. C 402, 325–334 (2004)

    ADS  Google Scholar 

  25. Lorenz, B., Meng, R. L., Xue, Y. Y., Chu, C. W.: Thermoelectric power and transport properties of Mg1−xAlxB2. Phys. Rev. B 64, 052513 (2001)

    ADS  Google Scholar 

  26. Ahn, J. S., Choi, E. S., Kang, W., Singh, D. J., Han, M., Choi, E. J.: Thermoelectric power of MgB2−xBex. Phys. Rev. B 65, 214534 (2002)

    ADS  Google Scholar 

  27. Mudgel, M., Awana, V. P. S., Lal, R., Kishan, H., Sharth Chandra, L. S., Ganesan, V., Narlikar, A. V., Bhalla, G. L.: Anomalous thermoelectric power of the Mg1−xAlxB2 system with x = 0.0 − 1.0. J. Phys.: Condens. Matter 20, 095205 (2008)

    ADS  Google Scholar 

  28. Tropeano, M., Pallecchi, I., Cimberle, M. R., Ferdeghini, C., Lamura, G., Vignolo, M., Martinelli, A., Palenzona, A., Putti, M.: Transport and superconducting properties of Fe-based superconductors: a comparison between SmFeAsO1−xFx and Fe1+yTe1−xSex. Supercond. Sci. Technol. 23, 054001 (2010)

    ADS  Google Scholar 

  29. Pimentel, J.L. Jr, Pureur, P., Vila, M. A., Ribeiro, R. A.: Magnetotransport properties and Seebeck effect in the superconductor FeSe0.5Te0.5. J. Phys.: Conf. Ser. 480, 012016 (2014)

    Google Scholar 

  30. Silaev, M., Garaud, J., Babaev, E.: Unconventional thermoelectric effect in superconductors that break time-reversal symmetry. Phys. Rev. B 92, 174510 (2015)

    ADS  Google Scholar 

  31. Garaud, J., Silaev, M., Babaev, E.: Thermoelectric signatures of time-reversal symmetry breaking states in multiband superconductors. Phys. Rev. Lett. 116, 097002 (2016)

    ADS  Google Scholar 

  32. Yerin, Y. S., Omelyanchouk, A. N.: Coherent current states in a two-band superconductor. Low Temp. Phys. 33, 401–407 (2007)

    ADS  Google Scholar 

  33. Zhitomirsky, M. E., Dao, V. H.: Ginzburg-Landau theory of vortices in a multigap superconductor. Phys. Rev. B 69, 054508 (2004)

    ADS  Google Scholar 

  34. Tilley, D. R.: The Ginzburg-Landau equations for pure two band superconductors. Proc. Phys. Soc. 84, 573–584 (1964)

    ADS  MathSciNet  Google Scholar 

  35. Tilley, D. R.: The Ginsburg-Landau equations for anisotropic alloys. Proc. Phys. Soc. 86, 289–295 (1965)

    ADS  Google Scholar 

  36. Gurevich, A.: Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors. Phys. Rev. B 67, 184515 (2003)

    ADS  Google Scholar 

  37. Dao, V. H., Zhitomirsky, M. E.: Anisotropy of the upper critical field in MgB2: the two-gap Ginzburg-Landau theory. Eur. Phys. J. B 44, 183–188 (2005)

    ADS  Google Scholar 

  38. Gurevich, A.: Limits of the upper critical field in dirty two-gap superconductors. Phys. C 456, 160–169 (2007)

    ADS  Google Scholar 

  39. Silaev, M., Babaev, E.: Microscopic theory of type-1.5 superconductivity in multiband systems. Phys. Rev. B 84, 094515 (2011)

    ADS  Google Scholar 

  40. Silaev, M., Babaev, E.: Microscopic derivation of two-component Ginzburg-Landau model and conditions of its applicability in two-band systems. Phys. Rev. B 85, 134514 (2012)

    ADS  Google Scholar 

  41. Dauxois, T., Peyrard, M.: Physics of solitons. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  42. Kulik, I. O., Omelyanchouk, A. N.: Current flow in long superconducting junctions. Sov. Phys. JETP 41, 1071–1075 (1976)

    ADS  Google Scholar 

  43. Canfield, P. C., Finnemore, D. K., Bud’ko, S. L., Ostenson, J. E., Lapertot, G., Cunningham, C. E., Petrovic, C.: Superconductivity in dense MgB2 wires. Phys. Rev. Lett. 86, 2423–2426 (2001)

    ADS  Google Scholar 

  44. Tarasov, M. A., Stepantsov, E. A., Naito, M., Tsukada, A., Winkler, D., Kalabukhov, A. S., Kupriyanov, M. Yu.: Superconducting weak bonds at grain boundaries in MgB2. J. Exp. Theor. Phys. 105, 636–641 (2007)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Shi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Shi, F. & Zhang, JJ. Thermoelectric Effect in Two-Band Single-Junction Superconducting Rings. J Supercond Nov Magn 33, 361–366 (2020). https://doi.org/10.1007/s10948-019-05229-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05229-y

Keywords

Navigation