Skip to main content
Log in

Angle-Resolved Transport Measurements Reveal Electronic Nematicity in Cuprate Superconductors

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Observations of spontaneous breaking of the rotational symmetry in an electron fluid, the so-called “electronic nematicity,” have been reported in several quantum materials. We have developed several different methods, based on angle-resolved transport measurements, to determine the amplitude and the director of the nematic order. We present methods that are applicable to thin films or single crystals, illustrate them with transport data obtained on copper oxide superconductors, and discuss their relative advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kivelson, S.A., Fradkin, E., Emery, V.J.: Electronic liquid-crystal phases of a doped Mott insulator. Nature. 393, 550–553 (1998)

    Article  ADS  Google Scholar 

  2. Oganesyan, V., Kivelson, S.A., Fradkin, E.: Quantum theory of a nematic Fermi fluid. Phys. Rev. B. 64, 195109 (2001)

    Article  ADS  Google Scholar 

  3. Zaanen, J., Nussinov, Z., Mukhin, S.I.: Duality in 2+1D quantum elasticity: superconductivity and quantum nematic order. Ann. Phys. 310, 181–260 (2004)

    Article  ADS  Google Scholar 

  4. Fradkin, E., Kivelson, S.A., Lawler, M.J., Eisenstein, J.P., Mackenzie, A.P.: Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–178 (2010)

    Article  ADS  Google Scholar 

  5. Carlson, E.W., Dahmen, K.A.: Using disorder to detect locally ordered electron nematics via hysteresis. Nat. Commun. 2, 379 (2011)

    Article  ADS  Google Scholar 

  6. Phillabaum, B.V., Carlson, E.W., Dahmen, K.A.: Spatial complexity due to bulk electronic nematicity in a superconducting underdoped cuprate. Nat. Commun. 3, 915 (2011)

    Article  ADS  Google Scholar 

  7. Beekman, A.J., et al.: Dual gauge field theory of quantum liquid crystals in two dimensions. Phys. Rep. 683, 1–110 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. Lilly, M.P., Cooper, K.B., Eisenstein, J.P., Pfeiffer, L.N., West, K.W.: Evidence for an anisotropic state of two-dimensional electrons in high Landau levels. Phys. Rev. Lett. 82, 394–397 (1999)

    Article  ADS  Google Scholar 

  9. Du, R.R., et al.: Strongly anisotropic transport in higher two-dimensional Landau levels. Solid State Commun. 109, 389 (1999)

    Article  ADS  Google Scholar 

  10. Borzi, R.A., et al.: Formation of a nematic fluid at high fields in Sr3Ru2O7. Science. 315, 214–217 (2007)

    Article  ADS  Google Scholar 

  11. Ando, Y., Segawa, K., Komiya, S., Lavrov, A.N.: Electrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductors. Phys. Rev. Lett. 88, 137005 (2002)

    Article  ADS  Google Scholar 

  12. Abdel-Jawad, M., et al.: Anisotropic scattering and anomalous normal-state transport in a high-temperature superconductor. Nat. Phys. 2, 821–825 (2006)

    Article  Google Scholar 

  13. Hinkov, V., et al.: Electronic liquid crystal state in the high-temperature superconductor YBaCuO. Science. 319, 597–600 (2008)

    Article  Google Scholar 

  14. Daou, R., et al.: Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor. Nature. 463, 519–522 (2010)

    Article  ADS  Google Scholar 

  15. Lawler, M.J., et al.: Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature. 466, 347–351 (2010)

    Article  ADS  Google Scholar 

  16. Li, L., Alidoust, N., Tranquada, J.M., Gu, G.D., Ong, N.P.: Unusual Nernst effect suggesting time-reversal violation in the striped cuprate superconductor LBCO. Phys. Rev. Lett. 107, 277001 (2011)

    Article  Google Scholar 

  17. Mesaros, A., et al.: Topological defects coupling smectic modulations to intra–unit-cell nematicity in cuprates. Science. 333, 426–430 (2011)

    Article  ADS  Google Scholar 

  18. Fujita, K., et al.: Simultaneous transitions in cuprate momentum-space topology and electronic symmetry breaking. Science. 344, 612–616 (2014)

    Article  ADS  Google Scholar 

  19. Lubashevsky, Y., Pan, L.D., Kirzhner, T., Koren, G., Armitage, N.P.: Optical birefringence and dichroism of cuprate superconductors in the THz regime. Phys. Rev. Lett. 112, 147001 (2014)

    Article  ADS  Google Scholar 

  20. Cyr-Choinière, O., et al.: Two types of nematicity in the phase diagram of the cuprate superconductor YBa2Cu3Oy. Phys. Rev. B. 92, 224502 (2015)

    Article  ADS  Google Scholar 

  21. Wu, J., Bollinger, A.T., He, X., Božović, I.: Spontaneous breaking of rotational symmetry in copper oxide superconductors. Nature. 547, 432–435 (2017)

    Article  Google Scholar 

  22. Zhang, J.-C., et al.: Anomalous thermal diffusivity in underdoped YBa2Cu3O6+x. Proc. Natl. Acad. Sci. U.S.A. 114, 5378–5383 (2017)

    Article  ADS  Google Scholar 

  23. Zhao, L., et al.: Global inversion-symmetry-broken phase inside the pseudogap region of YBa2Cu3Oy. Nat. Phys. 13, 250–254 (2017)

    Article  Google Scholar 

  24. Wu, J., Bollinger, A.T., He, X., Božović, I.: Detecting electronic nematicity by the angle-resolved transverse resistivity measurements. J. Supercond. Nov. Magn. 32, 1623 (2018). https://doi.org/10.1007/s10948-018-4885-3

    Article  Google Scholar 

  25. Fernandes, R.M., Chubukov, A.V., Schmalian, J.: What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014)

    Article  Google Scholar 

  26. Johnson, P.D., et al.: Spin-orbit interactions and the nematicity observed in the Fe-based superconductors. Phys. Rev. Lett. 114, 167001 (2015)

    Article  ADS  Google Scholar 

  27. Avci, S., et al.: Magnetically driven suppression of nematic order in an iron-based superconductor. Nat. Commun. 5, 3845 (2014)

    Article  ADS  Google Scholar 

  28. Montgomery, H.C.: Method for measuring electrical resistivity of anisotropic materials. J. Appl. Physiol. 42, 2971–2975 (1971)

    Article  ADS  Google Scholar 

  29. Bozovic, I., et al.: Epitaxial strain and superconductivity in La2-xSrxCuO4 thin films. Phys. Rev. Lett. 89, 107001–107004 (2002)

    Article  ADS  Google Scholar 

  30. Bozovic, I., et al.: No mixing of superconductivity and anti-ferromagnetism in a high-critical-temperature superconductor. Nature. 422, 873–875 (2003)

    Article  ADS  Google Scholar 

  31. Gozar, A., et al.: Interface superconductivity between a metal and a Mott insulator. Nature. 455, 782–785 (2008)

    Article  ADS  Google Scholar 

  32. Logvenov, G., Gozar, A., Bozovic, I.: High-temperature superconductivity in a single copper-oxygen plane. Science. 326, 699–702 (2009)

    Article  ADS  Google Scholar 

  33. Smadici, S., et al.: Superconducting transition at 38 K in insulating-overdoped La2CuO4-La1.64Sr0.36CuO4 superlattices: evidence for interface electronic redistribution from resonant soft X-Ray scattering. Phys. Rev. Lett. 102, 107004 (2009)

    Article  ADS  Google Scholar 

  34. Bollinger, A.T., et al.: Superconductor–insulator transition in La2-xSrxCuO4 at the pair quantum resistance. Nature. 472, 458–460 (2011)

    Article  ADS  Google Scholar 

  35. Dean, M.P.M., et al.: Spin excitations in a single La2CuO4 layer. Nat. Mater. 11, 850–854 (2012)

    Article  ADS  Google Scholar 

  36. Dean, M.P.M., et al.: Persistence of magnetic excitations in La2−xSrxCuO4 from the undoped insulator to the heavily overdoped non-superconducting metal. Nat. Mater. 12, 1019–1023 (2013)

    Article  ADS  Google Scholar 

  37. Wu, J., et al.: Anomalous independence of interface superconductivity on carrier density. Nat. Mater. 12, 877–881 (2013)

    Article  ADS  Google Scholar 

  38. Božović, I., He, X., Wu, J., Bollinger, A.T.: Dependence of critical temperature in overdoped copper oxides on superfluid density. Nature. 536, 309–311 (2016)

    Article  ADS  Google Scholar 

  39. Giraldo-Gallo, P., et al.: Scale invariant magnetoresistance in the strange metal phase of a cuprate superconductor. Science. 361, 479–481 (2018)

    Article  ADS  Google Scholar 

  40. Mahmood, F., He, X., Božović, I., Armitage, N.P.: Locating the missing superconducting electrons in overdoped cuprates. Phys. Rev. Lett. 122, 027003 (2019)

    Article  ADS  Google Scholar 

Download references

Funding

The research at Brookhaven National Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. X.H. was supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4410.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Božović.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Bollinger, A.T., He, X. et al. Angle-Resolved Transport Measurements Reveal Electronic Nematicity in Cuprate Superconductors. J Supercond Nov Magn 33, 87–92 (2020). https://doi.org/10.1007/s10948-019-05222-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05222-5

Keywords

Navigation