Skip to main content
Log in

Detecting Electronic Nematicity by the Angle-Resolved Transverse Resistivity Measurements

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The observation of nonzero voltage transverse to the current flow, in zero magnetic field, is a sensitive indication of the nematic order in cuprate superconductors. But this effect should be carefully identified and differentiated from various conceivable experimental artifacts. Here we discuss in detail the five types of artifacts commonly encountered in transport experiments and explain how we rule out these possibilities by decisive experimental evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fradkin, E., Kivelson, S.A., Lawler, M.J., Eisenstein, J.P., Mackenzie, A.P.: Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–78 (2010)

    Article  ADS  Google Scholar 

  2. Kivelson, S.A., Fradkin, E., Emery, V.J.: Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998)

    Article  ADS  Google Scholar 

  3. Zaanen, J., Nussinov, Z., Mukhin, S.I.: Duality in 2 + 1D quantum elasticity: superconductivity and quantum nematic order. Ann. Phys. 310, 181–260 (2004)

    Article  ADS  MATH  Google Scholar 

  4. Carlson, E.W., Dahmen, K.A.: Using disorder to detect locally ordered electron nematics via hysteresis. Nat. Commun. 2, 376–379 (2011)

    Article  ADS  Google Scholar 

  5. Avci, S., et al.: Magnetically driven suppression of nematic order in an iron-based superconductor. Nat. Commun. 5, 3845 (2014)

    Article  ADS  Google Scholar 

  6. Zhou, X.J., et al.: Dual nature of the electronic structure of (La2−x−yNdySrx)CuO4 and La1.85Sr0.15CuO4. Phys. Rev. Lett. 86, 5578–5581 (2001)

    Article  ADS  Google Scholar 

  7. Ando, Y., Segawa, K., Komiya, S., Lavrov, A.N.: Electrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductors. Phys. Rev. Lett. 88, 137005 (2002)

    Article  ADS  Google Scholar 

  8. Abdel-Jawad, M., et al.: Anisotropic scattering and anomalous normal-state transport in a high-temperature superconductor. Nat. Phys. 2, 821–825 (2006)

    Article  Google Scholar 

  9. Lawler, M.J., et al.: Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010)

    Article  ADS  Google Scholar 

  10. Li, L., Alidoust, N., Tranquada, J.M., Gu, G.D., Ong, N.P.: Unusual Nernst effect suggesting time-reversal violation in the striped cuprate superconductor LBCO. Phys. Rev. Lett. 107, 277001 (2011)

    Article  Google Scholar 

  11. Zhao, L., et al.: Global inversion-symmetry-broken phase inside the pseudogap region of YBa2Cu3 O y. Nat. Phys. 13, 250–254 (2017)

    Article  Google Scholar 

  12. Fernandes, R.M., Chubukov, A.V., Schmalian, J.: What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014)

    Article  Google Scholar 

  13. Fujita, K., et al.: Simultaneous Transitions in Cuprate Momentum-Space Topology and Electronic Symmetry Breaking. Science 344, 612–616 (2014)

    Article  ADS  Google Scholar 

  14. Wu, J., Bollinger, A.T., He, X., Božović, I.: Spontaneous breaking of rotational symmetry in copper oxide superconductors. Nature 547, 432–435 (2017)

    Article  Google Scholar 

  15. Bozovic, I.: Atomic-layer engineering of superconducting oxides: Yesterday, today, tomorrow. IEEE Trans. Appl. Supercond. 11, 2686–2695 (2001)

    Article  ADS  Google Scholar 

  16. Presland, M. R., Tallon, J. L., Buckley, R. G., Flower, N. E.: General trends in oxygen stoichiometry effects on T c in Bi and Tl superconductors. Physica C 176, 95–105 (1991)

    Article  ADS  Google Scholar 

  17. Clayhold, J.A., et al.: Combinatorial measurements of Hall effect and resistivity in oxide films. Rev. Sci. Instrum. 79, 033908 (2008)

    Article  ADS  Google Scholar 

  18. Wu, J., et al.: Anomalous independence of interface superconductivity from carrier density. Nat. Mater. 12, 877–81 (2013)

    Article  ADS  Google Scholar 

  19. Wu, J., Bollinger, A.T., Sun, Y., Božović, I.: Hall effect in quantum critical charge-cluster glass. Proc. Natl. Acad. Sci. 113, 4284–4289 (2016)

    Article  ADS  Google Scholar 

  20. Wu, J., Božović, I.: Perspective: extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy. APL Mater. 3, 062401 (2015)

    Article  ADS  Google Scholar 

  21. Božović, I., He, X., Wu, J., Bollinger, A. T.: Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 536, 309–311 (2016)

    Article  ADS  Google Scholar 

  22. Segal, A., Karpovski, M., Gerber, A.: Inhomogeneity and transverse voltage in superconductors. Phys. Rev. B 83, 094531 (2011)

    Article  ADS  Google Scholar 

  23. Vašek, P., Janeček, I., Plecháček, V.: Intrinsic pinning and guided motion of vortices in high-Tc superconductors. Physica C 247, 381–384 (1995)

    Article  ADS  Google Scholar 

  24. Da Luz, M.S., et al.: Observation of asymmetric transverse voltage in granular high-Tc superconductors. Physica C 419, 71– 78 (2005)

    Article  ADS  Google Scholar 

  25. Francavilla, T.L., Cukauskas, E.J., Allen, L.H., Broussard, P.R.: Observation of a transverse voltage in the mixed state of YBCO thin films. IEEE Trans. Appl. Supercond. 5, 1717–1720 (1995)

    Article  ADS  Google Scholar 

Download references

Funding

The experimental work was done at the Brookhaven National Laboratory and was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. X. H. was supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4410.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Božović.

Additional information

This paper was presented at ICSM 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Bollinger, A.T., He, X. et al. Detecting Electronic Nematicity by the Angle-Resolved Transverse Resistivity Measurements. J Supercond Nov Magn 32, 1623–1628 (2019). https://doi.org/10.1007/s10948-018-4885-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4885-3

Keywords

Navigation