Skip to main content
Log in

Structural and Magnetic Properties of Ba1−xRexCo2ZnxFe16−xO27 W-Type Hexaferrites Prepared by Sol–Gel Auto-Combustion

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Ba1−xRexCo2ZnxFe16−xO27 (Re = La, Nd, Pr; x = 0.0, 0.1, 0.2) hexaferrites were prepared by a sol–gel auto-combustion method and sintering at 1250 °C for 2 h. The effects of rare-earth (RE) substitution on the structural and magnetic properties of the hexaferrites were investigated. XRD patterns of the samples revealed crystallization of pure W-type hexaferrite phase in all samples, except for Nd–Zn (x = 0.2) sample, which contained a minor M-type phase in addition to the major W-type phase. The saturation magnetization did not change appreciably with RE–Zn substitution, although the magnetic measurements revealed slight improvement with Pr–Zn substitution. However, the magnetocrystalline anisotropy field (Ha) increased significantly with RE–Zn substitution, recording a maximum increase up to 9.23 kOe compared with 6.30 kOe for the unsubstituted sample. The results indicated the possibility of tuning the anisotropy field, and consequently, the ferromagnetic resonance frequency, to frequency ranges appropriate for desired microwave applications. The thermomagnetic curves revealed spin reorientation transitions below 300 °C, and magnetic phase transition in the range at 461–481 °C, which was associated with the Curie temperature of the W phase. In addition, the weak magnetic phase transition in the temperature range of 505–516 °C was associated with Co-rich impurity magnetic phase, with enhanced superexchange interactions in Co-rich regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Smit, J., Wijn, H.P.J.: Ferrites. Wiley, New York (1959)

    Google Scholar 

  2. Chikazumi, S.: Physics of ferromagnetism 2e, 2nd edn. Oxford University Press, Oxford (2009)

    Google Scholar 

  3. Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012)

    Article  Google Scholar 

  4. Mahmood, S.H.: Ferrites with high magnetic parameters. In: Mahmood, S.H., Abu-Aljarayesh, I. (eds.) Hexaferrite permanent magnetic materials, pp. 111–152. Materials Research Forum LLC, Millersville (2016)

    Chapter  Google Scholar 

  5. Mahmood, S.H., Bsoul, I.: Tuning the magnetic properties of M-type hexaferrites. In: Jotania, R.B., Mahmood, S.H. (eds.) Magnetic oxides and composites, pp. 49–100. Materials Research Forum LLC, Millersville (2018)

    Google Scholar 

  6. Harris, V.G., Geiler, A., Chen, Y., Yoon, S.D., Wu, M., Yang, A., Chen, Z., He, P., Parimi, P.V., Zuo, X.: Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009)

    Article  ADS  Google Scholar 

  7. Özgür, Ü., Alivov, Y., Morkoç, H.: Microwave ferrites, part 2: passive components and electrical tuning. J. Mater. Sci. Mater. Electron. 20, 911–952 (2009)

    Article  Google Scholar 

  8. Mahmood, S.H.: High performance permanent magnets. In: Mahmood, S.H., Abu-Aljarayesh, I. (eds.) Hexaferrite permanent magnetic materials, pp. 47–73. Materials Research Forum LLC, Millersville (2016)

    Chapter  Google Scholar 

  9. Mahmood, S.H.: Permanent magnet applications. In: Mahmood, S.H., Abu-Aljarayesh, I. (eds.) Hexaferrite permanent magnetic materials, pp. 153–165. Materials Research Forum LLC, Millersville (2016)

    Chapter  Google Scholar 

  10. Abu-Aljarayesh, I.: Magnetic recording. In: Mahmood, S.H., Abu-Aljarayesh, I. (eds.) Hexaferrite permanent magnetic materials, pp. 166–181. Materials Research Forum LLC, Millersville (2016)

    Google Scholar 

  11. Stergiou, C., Litsardakis, G.: Preparation and magnetic characterization of Co2-W strontium hexaferrites doped with Ni and La. J. Magn. Magn. Mater. 323, 2362–2368 (2011)

    Article  ADS  Google Scholar 

  12. Khan, I., Sadiq, I., Ashiq, M.N.: Role of Ce–Mn substitution on structural, electrical and magnetic properties of W-type strontium hexaferrites. J. Alloys Compd. 509, 8042–8046 (2011)

    Article  Google Scholar 

  13. Zi, Z., Dai, J., Liu, Q., Liu, H., Zhu, X., Sun, Y.: Magnetic and microwave absorption properties of W-type Ba (ZnxCo1− x)2Fe16O27 hexaferrite platelets. Journal of Applied Physics. 109, 07E536 (2011)

    Article  Google Scholar 

  14. Zou, H., Li, S., Zhang, L., Yan, S., Wu, H., Zhang, S.: M. Tian, determining factors for high performance silicon rubber microwave absorbing materials. J. Magn. Magn. Mater. 323, 1643–1651 (2011)

    Article  ADS  Google Scholar 

  15. Huang, X., Chen, J., Zhang, J., Wang, L., Zhang, Q.: A new microwave absorber based on antimony-doped tin oxide and ferrite composite with excellent electromagnetic match. Journal of Alloys and Compounds. 506, 347–350 (2010)

    Article  Google Scholar 

  16. Wu, Y., Ong, C., Lin, G., Li, Z.: Improved microwave magnetic and attenuation properties due to the dopant V2O5 in W-type barium ferrites. J. Phys. D. Appl. Phys. 39, 2915 (2006)

    Article  ADS  Google Scholar 

  17. A. Pasko, F. Mazaleyrat, M. Lobue, V. Loyau, V. Basso, M. Küpferling, C. Sasso, L. Bessais: Magnetic and structural characterization of nanosized BaCoxZn2−xFe16O27 hexaferrite in the vicinity of spin reorientation transition, in: Journal of Physics: conference series, IOP Publishing, pp. 012045 2011

  18. Paoluzi, A., Licci, F., Moze, O., Turilli, G., Deriu, A., Albanese, G., Calabrese, E.: Magnetic, Mössbauer, and neutron diffraction investigations of W-type hexaferrite BaZn2−xCoxFe16O27 single crystals. J. Appl. Phys. 63, 5074–5080 (1988)

    Article  ADS  Google Scholar 

  19. Xu, J., Zou, H., Li, H., Li, G., Gan, S., Hong, G.: Influence of Nd3+ substitution on the microstructure and electromagnetic properties of barium W-type hexaferrite. J. Alloys Compd. 490, 552–556 (2010)

    Article  Google Scholar 

  20. S.H. Mahmood, Q. Al-Shiab, I. Bsoul, Y. Maswadeh, A. Awadallah, Structural and magnetic properties of (Mg, Co)2W hexaferrites, arXiv preprint arXiv:1711.08581, (2017)

  21. Tang, J., Liu, X., Rehman, K.M.U., Li, D., Li, M., Yang, Y.: Microstructure and characterization of W-type hexaferrite Ba1− xLaxFe22+Fe163+O27 prepared by solid state method. J. Magn. Magn. Mater. 452, 354–359 (2018)

    Article  ADS  Google Scholar 

  22. Huang, X., Zhang, J., Wang, H., Yan, S., Wang, L., Zhang, Z.: Er3+-substituted W-type barium ferrite: preparation and electromagnetic properties. Journal of Rare Earths. 28, 940–943 (2010)

    Article  Google Scholar 

  23. Wang, L., Song, J., Zhang, Q., Huang, X., Xu, N.: The microwave magnetic performance of Sm3+ doped BaCo2Fe16O27. J. Alloys Compd. 481, 863–866 (2009)

    Article  Google Scholar 

  24. J. Rodriguez-Carvajal: Recent developments of the program FULLPROF. IUCR Newsletter 26, 12 (2001)

  25. Mahmood, S.H., Al Sheyab, Q., Bsoul, I., Mohsen, O., Awadallah, A.M.: Structural and magnetic properties of Ga-substituted Co2-W hexaferrites. Current Applied Physics. 18, 2590–2598 (2018)

    Article  Google Scholar 

  26. Awadallah, A., Mahmood, S.H., Maswadeh, Y., Bsoul, I., Awawdeh, M., Mohaidat, Q.I., Juwhari, H.: Structural, magnetic, and Mossbauer spectroscopy of Cu substituted M-type hexaferrites. Mater. Res. Bull. 74, 192–201 (2016)

    Article  Google Scholar 

  27. Collomb, A., Wolfers, P., Obradors, X.: Neutron diffraction studies of some hexagonal ferrites: BaFe 12O19, BaMg2-W and BaCo2-W. J. Magn. Magn. Mater. 62, 57–67 (1986)

    Article  ADS  Google Scholar 

  28. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A. 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  29. Warren, B.E.: X-ray Diffraction. Addison-Wesley, Reading (1969)

    Google Scholar 

  30. Awadallah, A., Mahmood, S.H., Maswadeh, Y., Bsoul, I., Aloqaily, A.: Structural and magnetic properties of vanadium doped M-type barium hexaferrite (BaFe12-xVxO19). IOP Conf Ser: Mater Sci Eng. 92, 012006 (2015)

    Article  Google Scholar 

  31. Mahmood, S.H., Awadallah, A., Maswadeh, Y., Bsoul, I.: Structural and magnetic properties of Cu-V substituted M-type barium hexaferrites. IOP Conf Ser: Mater Sci Eng. 92, 012008 (2015)

    Article  Google Scholar 

  32. Rezlescu, L., Rezlescu, E., Popa, P., Rezlescu, N.: Fine barium hexaferrite powder prepared by the crystallisation of glass. J. Magn. Magn. Mater. 193, 288–290 (1999)

    Article  ADS  Google Scholar 

  33. Cullity, B.D., Graham, C.D.: Introduction to magnetic materials, 2nd edn. John Wiley & Sons, Hoboken (2011)

    Google Scholar 

  34. Grӧssinger, R.: A critical examination of the law of approach to saturation I. Fit procedure. Phys. Status Solidi A. 66, 665–674 (1981)

    Article  ADS  Google Scholar 

  35. Hessien, M., Rayan, D., Mahmoud, M., Alhadhrami, A., Rashad, M.: Controlling the structural, microstructure and magnetic properties of barium W-type hexaferrite elaborated using tartaric acid precursor strategy. J. Mater. Sci. Mater. Electron. 29, 9771–9779 (2018)

    Article  Google Scholar 

  36. Guo, F., Wu, X., Ji, G., Xu, J., Zou, L., Gan, S.: Synthesis and properties investigation of non-equivalent substituted W-type hexaferrite. J. Supercond. Nov. Magn. 27, 411–420 (2014)

    Article  Google Scholar 

  37. Ahmad, M., Grössinger, R., Kriegisch, M., Kubel, F., Rana, M.: Characterization of Sr-substituted W-type hexagonal ferrites synthesized by sol–gel autocombustion method. J. Magn. Magn. Mater. 332, 137–145 (2013)

    Article  ADS  Google Scholar 

  38. Iqbal, M.J., Khan, R.A., Mizukami, S., Miyazaki, T.: Tailoring of structural, electrical and magnetic properties of BaCo2W-type hexaferrites by doping with Zr–Mn binary mixtures for useful applications. J. Magn. Magn. Mater. 323, 2137–2144 (2011)

    Article  ADS  Google Scholar 

  39. Jing, W., Hong, Z., Shuxin, B., Ke, C., Changrui, Z.: Microwave absorbing properties of rare-earth elements substituted W-type barium ferrite. J. Magn. Magn. Mater. 312, 310–313 (2007)

    Article  ADS  Google Scholar 

  40. Tsutaoka, T., Koga, N.: Magnetic phase transitions in substituted barium ferrites BaFe12− x(Ti0. 5Co0. 5)xO19 (x = 0–5). J. Magn. Magn. Mater. 325, 36–41 (2013)

    Article  ADS  Google Scholar 

  41. Mahmood, S.H., Zaqsaw, M.D., Mohsen, O.E., Awadallah, A., Bsoul, I., Awawdeh, M., Mohaidat, Q.I.: Modification of the magnetic properties of Co2Y hexaferrites by divalent and trivalent metal substitutions. Solid State Phenom. 241, 93–125 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami H. Mahmood.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmour, M.K., Al-Hwaitat, E.S., Bsoul, I. et al. Structural and Magnetic Properties of Ba1−xRexCo2ZnxFe16−xO27 W-Type Hexaferrites Prepared by Sol–Gel Auto-Combustion. J Supercond Nov Magn 33, 473–482 (2020). https://doi.org/10.1007/s10948-019-05213-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05213-6

Keywords

Navigation