Skip to main content
Log in

Structural, Optical, and Magnetic Properties of Gd-Doped TiO2 Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Polycrystalline pure and (1, 3 and 5%) Gd-doped TiO2 nanoparticles were synthesised by simple sol-gel method. The structure, morphology and physico-chemical properties of samples were characterised by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectra, transmission electron microscopy and N2 absorption and desorption isotherms. Photoluminescence (PL) measurements revealed that the samples exhibit extended light absorption frequencies in visible light region. The visible emission of TiO2 is found to be largely dependent on the defects and which were found to be tailored by varying Gd doping concentration. Room temperature magnetic studies reveal the transition from ferromagnetic to paramagnetic nature which occurs due to the high magnetic moment of Gd ions and its interaction with host lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Janisch, R., Gopal, P., Spaldin, N. A: Transition metal-doped TiO2 and ZnO—present status of the field. J. Phys.: Condens. Matter 7(27), R657—R689 (2005)

    Google Scholar 

  2. Tseng, L.-T., Luo, X., Tan, T.T., Li, S., Yi, J.: Doping concentration dependence of microstructure and magnetic behaviours in Co-doped TiO2 nanorods. Nanoscale Res. Lett. 9(1), 1–10 (2014)

    Article  ADS  Google Scholar 

  3. Muralidharan, M., Anbarasu, V., Elaya Perumal, A., Sivakumar, K.: Studies on multifunctional behaviour of Cr doped SrWO4 compounds. J. Mater. Sci.-Mater. Electron. https://doi.org/10.1007/s10854-015-3311-x (2015)

    Google Scholar 

  4. You, M., Kim, T.G., Sung, Y.-M.: Synthesis of Cu-doped TiO2 nanorods with various aspect ratios and dopant concentrations. Cryst. Growth Des. 10, 983–987 (2010)

    Article  Google Scholar 

  5. Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumra, T., Kawasaki, M., Ahmet, P., Chikyow, T., SY, K., Koinuma, H.: Room temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854–856 (2001)

    Article  ADS  Google Scholar 

  6. Tian, Z.M., Yuan, S.L., Yin, S.Y., Zhang, S.Q., Xie, H.Y., Miao, J.H., Wang, Y.Q., He, J.H., Li, J.Q.: Synthesis and magnetic properties of vanadium doped anatase TiO2 nanoparticles. J. Magn. Magn. Mater. 320, L5—L9 (2008)

    Article  Google Scholar 

  7. Patel, S.K.S., Gajbhiye, N.S.: Oxygen deficiency induced ferromagnetism in Cr-doped TiO2 nanorods. J. Magn. Magn. Mater 330, 21–24 (2013)

    Article  ADS  Google Scholar 

  8. Glaspell, G., Manivannan, A.: Sol-Gel synthesis and magnetic studies of titanium dioxide doped with 10% M (M = Fe, Mn and Ni). J. Cluster Sci. 16(4), 501–513 (2005)

    Article  Google Scholar 

  9. Santara, B., Pal, B., Giri, P.K.: Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. J. Appl. Phys. 110(11), 114322 (2011)

    Article  ADS  Google Scholar 

  10. Meng, H.J., Hou, D.L., Jia, L.Y., He, X.J., Zhou, H.J., Li, X.L.: Role of oxygen vacancies on ferromagnetism in Fe doped TiO2 thin films. J. Appl. Phys. 102(7), 073905 (2007)

    Article  ADS  Google Scholar 

  11. Patel, S.K.S., Kurian, S., Gajbhiye, N.S.: Room-temperature ferromagnetism of Fe-doped TiO2 nanoparticles driven by oxygen vacancy. Mater. Res. Bull. 48, 655–660 (2013)

    Article  Google Scholar 

  12. Patel, S.K.S., Gajbhiye, N.S., Sadgopal, K.: Date: Ferromagnetism of Mn-doped TiO2 nanorods synthesized by hydrothermal method. J. Alloys Compd 509S, S427—S430 (2011)

    Google Scholar 

  13. Rashad, M.M., Elsayed, E.M., Al-Kotb, M.S., Shalan, A.E.: The structural, optical, magnetic and photocatalytic properties of transition metal ions doped TiO2 nanoparticles. J. Alloys Compd. 581, 71–78 (2013)

    Article  Google Scholar 

  14. Ahmed, S.A.: Annealing effects on structure and magnetic properties of Mn doped TiO2. J. Magn. Magn. Mater 402, 178–183 (2016)

    Article  ADS  Google Scholar 

  15. Shi, H., Zhang, P., Li, S.-S., Xia, J.-B.: Magnetic coupling properties of rare-earth metals (Gd, Nd) doped ZnO: first principles calculations. J. Appl. Phys 106, 023910 (2009)

    Article  ADS  Google Scholar 

  16. Paul, S., Choudhury, B., Choudhury, A.: Magnetic property study of Gd doped TiO2 nanoparticles. J. Alloys Compd. 601, 201–206 (2014)

    Article  Google Scholar 

  17. Parra, R., Goes, M.S., Castro, M.S., Longo, E., Bueno, P.R., Varela, J.A.: Reaction pathway to the synthesis of anatase via the chemical modification of titanium isopropoxide with acetic acid. Chem. Mater. 20 (1), 143–150 (2008)

    Article  Google Scholar 

  18. Singh, G., Singh, R. C.: Synthesis and characterisation of Gd-doped SnO2 nanostructures and their enhanced gas sensing properties. Ceram. Int. 43(2), 2350–2360 (2017)

    Article  Google Scholar 

  19. Parida, K.M., Sahu, N.: Visible light induced photocatalytic activity of rare earth titania nanocomposites. J. Mol. Catal. A: Chem. 287, 151–158 (2008)

    Article  Google Scholar 

  20. Sumithra, S., Victor Jaya, N.: Band gap tuning and room temperature ferromagnetism in Co doped Zinc stannate nanostructures. Physica B 493, 35–42 (2016)

    Article  ADS  Google Scholar 

  21. Xiao, J., Peng, T., Li, R., Peng, Z., Yan, C.: Preparation, phase transformation and photocatalytic activities of cerium-doped mesoporous titania nanoparticles. J. Solid State Chem. 179, 1161–1170 (2006)

    Article  ADS  Google Scholar 

  22. Jun, D., Qi, W., Shan, Z., Xin, G., Jiao, L., Haizhi, G., Wenlong, Z., Hailong, P., Jianguo, Z.: Effect of hydroxyl groups on hydrophilic and photocatalytic activities of rare earth doped titanium dioxide thin films. J. Rare Earths 33(2), 148–153 (2015)

    Article  Google Scholar 

  23. Choi, H.C., Tung, Y.M., Kim, S.B.: Size effects in the Raman spectra of TiO2 nanoparticles. Vib. Spectrosc. 37, 33–38 (2005)

    Article  Google Scholar 

  24. Agorku, E.S., Mamba, B.B., Pandey, A.C., Mishra, A.K.: Sulfur/gadolinium-Codoped TiO2 nanoparticles for enhanced visible-light photocatalytic performance. Journal of Nanomaterials. https://doi.org/10.1155/2014/289150 (2014)

    Article  Google Scholar 

  25. Tian, F., Zhang, Y., Zhang, J., Pan, C.: Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J. Phys. Chem. C 116, 7515–7519 (2012)

    Article  Google Scholar 

  26. Li, J., Yang, X., Yu, X., Xu, L., Kang, W., Yan, W., Gao, H., Liu, Z., Guo, Y.: Rare earth oxide-doped titania nanocomposites with enhanced photocatalytic activity towards the degradation of partially hydrolysis polyacrylamide. Appl. Surf. Sci. 255(6), 3731–3738 (2009)

    Article  ADS  Google Scholar 

  27. Reszcz’ynska, J., Grzyb, T., Sobczak, J.W., Lisowski, W., Gazda, M., Ohtani, B., Zaleska, A.: Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts. Appl. Catal. B 163, 40–49 (2015)

    Article  Google Scholar 

  28. Kavan, L., Gratzel, M., Rathousky, J., Zukalb, A.: Nanocrystalline TiO2 (anatase) electrodes: surface morphology, adsorption, electrochemical properties. J. Electrochem. Soc. 143(2), 394–400 (1996)

    Article  Google Scholar 

  29. Jingjing, X., Ao, Y., Fu, D., Yuan, C.: Synthesis of Gd-doped TiO2 nanoparticles under mild condition and their photocatalytic activity. Colloids Surf. A 334(1–3), 107–111 (2009)

    Google Scholar 

  30. Paul, S., Chetri, P., Choudhury, B., Ahmed, G.A., Choudhury, A.: Enhanced visible light photocatalytic activity of Gadolinium doped nanocrystalline titania: an experimental and theoretical study. J. Colloid Interface Sci. 439, 54–61 (2015)

    Article  ADS  Google Scholar 

  31. Xiao, Q., Si, Z., Yu, Z., Qiu, G.: Sol–gel auto-combustion synthesis of samarium-doped TiO2 nanoparticles and their photocatalytic activity under visible light irradiation. Mater. Sci. Eng. B 137(1–3), 189–194 (2007)

    Article  Google Scholar 

  32. Jing, W., Liu, Q., Gao, P., Zhu, Z.: Influence of praseodymium and nitrogen co-doping on the photocatalytic activity of TiO2. Mater. Res. Bull. 46(11), 1997–2003 (2011)

    Article  Google Scholar 

  33. Kralchevska, R., Milanova, M., Hristov, D., Pintar, A., Todorovsky, D.: Synthesis, characterization and photocatalytic activity of neodymium, nitrogen and neodymium–nitrogen doped TiO2. Mater. Res. Bull. 47(9), 2165–2177 (2012)

    Article  Google Scholar 

  34. Lu, Y.H., Yi, J.B., Feng, Y.P., Herng, T.S., Liu, X., Gao, D.Q., Xue, D.S., Xue, J.M., Ouyang, J.Y., Ding, J.: Room temperature ferromagnetism in Teflon due to carbon dangling bonds. Nat. Commun. 3, 727 (2012)

    Article  Google Scholar 

  35. Ghosh, S., Khan, G.G., Mandal, K., Samanta, A., Nambissan, P.M.G.: Evolution of vacancy-type defects, phase transition, and intrinsic ferromagnetism during annealing of nanocrystalline TiO2 studied by positron annihilation spectroscopy. J. Phys. Chem. C 117(16), 8458–8467 (2013)

    Article  Google Scholar 

  36. Murphy, D. M.: EPR (electron paramagnetic resonance) spectroscopy of polycrystalline oxide systems. Metal Oxide Catalysis. https://doi.org/10.1002/9783527626113.ch1 (2008)

  37. Yang, G., Jiang, Z., Shi, H., Xiao, T., Yan, Z.: Preparation of highly visible-light active N-doped TiO2 photocatalyst. J. Mater. Chem. 20, 5301–5309 (2010)

    Article  Google Scholar 

  38. Kumar, C.P., Gopal, N.O., Wang, T.C., Wong, M.-S., Ke, S.C.: EPR investigation of TiO2 nanoparticles with temperature-dependent properties. J. Phys. Chem. B 110, 5223–5229 (2006)

    Article  Google Scholar 

  39. Singh, V., Sivaramaiah, G., Rao, J.L., Kim, S.H.: Luminescence and EPR studies of Gd3+-activated strong UV-emitting CaZrO3 phosphors prepared via solution combustion method. J. Electron. Mater. 43(9), 3486–3492 (2014)

    Article  ADS  Google Scholar 

  40. Aragón, F.H., Chitta, V.A., Coaquira, J.A.H., Hidalgo, P., Brito, H.F.: Long-range ferromagnetic order induced by a donor impurity band exchange in SnO2: Er3+ nanoparticles. J. Appl. Phys 114, 203902 (2013)

    Article  ADS  Google Scholar 

  41. Wang, W., Hong, Y., Yu, M., Rout, B., Glass, G.A., Tang, J.: Structure and magnetic properties of pure and Gd-doped HfO2 thin films. J. Appl. Phys. 99(8), 08M117 (2006)

    Article  Google Scholar 

  42. Ney, V., Ye, S., Kammermeier, T., Ollefs, K., Wilhelm, F., Rogalev, A., Lebegue, S., da Rosa, A.L., Ney, A.: Structural and magnetic analysis of epitaxial films of Gd-doped ZnO. Phys. Rev. B: Condens. Matter. 85, 235203 (2012)

    Article  ADS  Google Scholar 

  43. Ghosh, S., Khan, G.G., Mandal, K.: Defect-driven magnetism in luminescent in n/p-type pristine and Gd-substituted SnO2 nanocrystalline thin films. Appl. Mater. Interfaces 4, 2048–2056 (2012)

    Article  Google Scholar 

  44. Tseng, L.-T., Luo, X., Bao, N., Ding, J., Li, S., Yi, J.: Structures and properties of transition-metal-doped TiO2 nanorods. Mater. Lett. 170, 142–146 (2016)

    Article  Google Scholar 

  45. Tseng, L.-T., Luo, X., Li, S., Yi, J.: Magnetic properties of Sm-doped rutile TiO2 nanorods. J. Alloys Compd. 687, 294–299 (2016)

    Article  Google Scholar 

  46. Vijayaprasath, G., Murugan, R., Hayakawa, Y., Ravi, G.: Optical and magnetic studies on Gd-doped ZnO nanoparticles synthesized by co-precipitation method. J. Lumin. 178, 375–383 (2016)

    Article  Google Scholar 

  47. Franco, A. Jr., Pessoni, H.V.S.: Effect of Gd doping on the structural, optical band-gap, dielectric and magnetic properties of ZnO nanoparticles. Physica B 506, 145–151 (2017)

    Article  ADS  Google Scholar 

  48. Adhikari, R., Das, A.K., Karmakar, D., Ghatak, J.: Gd doped SnO2 nanoparticles: structure and magnetism. J. Magn. Magn. Mater. 322(22), 3631–3637 (2010)

    Article  ADS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge DST, New Delhi for providing financial support to carry out this research work under PURSE II scheme. One of the authors, Mrs. Nithyaa. N is thankful to DST, New Delhi for the award of DST-PURSE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Nithyaa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 1.10 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nithyaa, N., Jaya, N.V. Structural, Optical, and Magnetic Properties of Gd-Doped TiO2 Nanoparticles. J Supercond Nov Magn 31, 4117–4126 (2018). https://doi.org/10.1007/s10948-018-4693-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4693-9

Keywords

Navigation