Skip to main content
Log in

Investigation of Superparamagnetism in Microwave and Conventional Processed Mn0.5Zn0.5Fe2O4 Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Nanoparticles of spinel cubic Mn0.5Zn0.5Fe2O4 are first prepared by the coprecipitation method and then subjected to conventional solid-state sintering and microwave processing techniques. Particle sizes are estimated by field emission scanning electron microscopy (FESEM) to be in the nanometer (5–13 nm) range. Transmission electron microscopy (TEM) also supports the FESEM data. The magnetization measurement by vibration sample magnetometry of the conventionally sintered sample shows a paramagnetic nature at room temperature, a superparamagnetic behaviour at low temperature, and a ferromagnetic nature at even lower temperature. The blocking temperature is estimated to be nearly 110 K. Microwave-processed samples show a superparamagnetic nature even at room temperature. The Fe3+ cations are found at both the sites confirmed by X-ray photoelectron spectroscopy (XPS), are prepared by microwave processing, and have better magnetic properties as compared to the conventionally sintered particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pozar, D. M.: Microwave engineering, vol. 2005, p 1998. Wiley, USA (2012)

    Google Scholar 

  2. Song, N.-N., Yang, H.-T., Liu, H.-L., Ren, X., Ding, H.-F., Zhang, X.-Q., Cheng, Z.-H.: Exceeding natural resonance frequency limit of monodisperse Fe3O4 nanoparticles via superparamgantic relaxation. Sci. Rep. 3, 3161 (2013). doi:10.1038/srep03161

    Article  Google Scholar 

  3. Suneetha, T, Kundu, S., Kashyap, SC., Gupta, H.C., Nath, T. K.: Superparamagnetic state by linear and non-linear AC magnetic susceptibility in Mn0.5Zn0.5Fe2O4 ferrites nanoparticles. J. Nanosci. Nanotechnol 13, 270 (2013)

    Article  Google Scholar 

  4. Pankhurst, Q A, Connolly, J, Jones, S K, Dobson, J: Applications of magnetic nanoparticles in biomedicine. J. Phys. D; Appl. Phys. 36, R167 (2003)

    Article  ADS  Google Scholar 

  5. Azadmanjiri: Preparation of Mn-Zn ferrite nanoparticles from chemical sol-gel combustion method and the magnetic properties after sintering. J. Non-Crystall. Solids 353, 4170 (2010)

    Article  ADS  Google Scholar 

  6. Pannaparayil, T., Marande, R., Komarneni, S.: Magnetic properties of high-density Mn-Zn ferrites. J. Appl. Phys. 69(8), 5349 (1991)

    Article  ADS  Google Scholar 

  7. Xuan, Y., Li, Q, Yang, G: Synthesis and magnetic properties of Mn-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 312, 467 (2006)

    ADS  Google Scholar 

  8. Xuan, Y., Li, Q, Yang, G.: Synthesis and magnetic properties of Mn-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 312, 464 (2007)

    Article  ADS  Google Scholar 

  9. Zhenyu, L, et al.: Microwave assisted low temperature synthesis of MnZn ferrite nanoparticles. Nanoscale Res. Lett. 2, 40 (2007)

    Article  ADS  Google Scholar 

  10. Hong, R. Y., Li, J. H., Li, H. Z., Ding, J., Zheng, Y., Wei, D. G.: Synthesis of Fe3O4 nanoparticles without inert gas protection used as precursors of magnetic fluids. J. Magn. Magn. Mater. 320, 1605–1614 (2008)

    Article  ADS  Google Scholar 

  11. Sertkol, M., Koseoglu, Y., Baykal, A., Kavas, H., Toprak, M. S.: Synthesis and magnetic characterization of Zn0.7 Ni0.3Fe2O4 nanoparticles via microwave assisted combustion route. J. Magn. Magn. Mater. 322, 866–871 (2010)

    Article  ADS  Google Scholar 

  12. Ramesh, T., Shinde, R. S., Murthy, S. R.: Synthesis characterization of nanocrystalline Ni0.94Co0.03Mn0.04Cu0.03Fe1.96−xAlxO4 ferrites for microwave device applications. J. Magn. Magn. Mater. 345, 276–281 (2013)

    Article  ADS  Google Scholar 

  13. Reddy, M. P., Madhuri, W., Ramana, M. V., Reddy, N. R., Siva Kumar, K. V., Murthy, V. R. K., Siva kumar, K., Reddy, R. R.: Effect of sintering temperature on structural and magnetic properties of NiCuZn and MgCuZn ferrites. J. Magn. Mater. Mater 322, 2819–2823 (2010)

    Article  ADS  Google Scholar 

  14. Naidu, K. C. B., Madhuri, W.: Microwave processed NiMg ferrite: Studies on structural and magnetic properties. J. Magn. Mater. Mater. 420, 109–116 (2016)

    Article  ADS  Google Scholar 

  15. Dube, C. L., Kashyap, S. C., Dube, D. C., Agarwal, D. K.: Growth of Si0.75Ge0.25 alloy nanowires in a separated H. Field by microwave processing. Appl. Phys. Lett. 94, 213107 (2009)

    Article  ADS  Google Scholar 

  16. Thostenson, T., Chou, T.-W: Microwave processing: fundamentals and applications. Compos. Part A 30, 1055 (1999)

    Article  Google Scholar 

  17. Dube, C. L., Kashyap, S. C., Dube, D. C., Agarwal, D.K.: Microwave processing of ZnO based dilute magnetic semiconductors. IEEE Conf. Proc. of Intl. conf. on Microwaves-08, p. 126 (2008)

  18. Biju, V., Sugathan, N., Vrinda, V., Salini, S. L.: Estimation of lattice strain in nanocrystalline silver from X-ray diffraction line broadening. J. Mater. Sci. 43, 1175 (2008)

    Article  ADS  Google Scholar 

  19. Sankaranarayana, V. K., Sreekumar, C.: Precurson synthesis and microwave processing of nickel ferrite nanoparticles. Curr. Appl. Phys. 3, 205–208 (2003)

    Article  Google Scholar 

  20. Kalyani, S., Sangeetha, J., Philip, J.: Microwave assisted synthesis of ferrite nanoparticles: Effect of reaction temperature on particle size and magnetic properties. J Nanosci. Nanotech. 15, 5768–5774 (2015)

    Article  Google Scholar 

  21. Yadoji, P., Ramesh Peelamedu, D., Agrawal, R.: Roy. Microwave sintering of Ni-Zn ferrites: Comparison with conventional sintering. Mater. Sci. Eng. B 98, 269–278 (2003)

    Article  Google Scholar 

  22. Das, S., Mukhopadhyay, A. K., Datta, S., Basu, D.: Prospects of microwave processing: an overview. Bull. Mater. Sci. 32, 1–13 (2009)

    Article  Google Scholar 

  23. Khot, V. M., Salunkhe, A. B., Phadatare, M. R., Thorat, N. D., Pawar, S. H.: Low-temperature synthesis of Mn x Mg1−x Fe2O4 (x = 0–1) nanoparticles: cation distribution, structural and magnetic properties. J. Phys. D: Appl. Phys. 46, 055303 (2013)

    Article  ADS  Google Scholar 

  24. Das, P. S., Singh, G. P.: Structural magnetic, and dielectric study of Cu substituted NiZn ferrite nanorod. J. Magn. Mater. Mater. 401, 918–924 (2016)

    Article  ADS  Google Scholar 

  25. Sindhu, S., Birajdar, D. D.: Structural and, magnetic characterization of Co2 + substituted nano structured Copper-Zinc spinel ferrite. IOSR J. Appl. Phys. 3, 33–41 (2013)

    Article  Google Scholar 

  26. Booske, J. H., Reid, F., Cooper, S. A.: Freeman, Microwave enhanced reaction kinetics in ceramics. Mat. Res. Innovat. 1, 77 (1997)

    Article  Google Scholar 

  27. Suneetha, T., Kashyap, S. C., Sharma, S. K., Reddy, V. R.: Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: role of Mn. J. Phys. Chem. Solids. 91, 136–144 (2015)

    Google Scholar 

  28. Hessien, M. M., Rashad, M. M., El-Barawy, K., Ibrahim, I. A: Influence of manganese substitution and annealing temperature on the formation, microstructure and magnetic properties of Mn-Zn ferrites. J. Magn. Magn. Mater. 320, 1615 (2008)

    Article  ADS  Google Scholar 

  29. Yamashita, T., Hayes, P.: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008)

    Article  ADS  Google Scholar 

  30. Hu, X., Yu, J. C., Gong, J., Li, Q., Li, G.: α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater. 19, 2324–2329 (2007)

    Article  Google Scholar 

  31. Wandelt, K.: Photoemission studies of adsorbed oxygen and oxide layers. Surf. Sci. Rep. 2, 1–121 (1982)

    Article  ADS  Google Scholar 

  32. Wang, W. P., Yang, H., Xian, T., Jiang, J. L.: XPS and magnetic properties of CoFe2O4 nanoparticles synthesized by a polyacrylamide gel route. Mater. Trans. 53, 1586–1589 (2012)

    Article  Google Scholar 

  33. Suneetha, T., Kashyap, S. C., Sharma, S. K., Reddy, V. R.: Cation distribution in Ni-substituted Mn0.5Zn0.5Fe2O4 nanoparticles: a Raman, Mossbauer, X-ray diffraction and electron spectroscopy study. J. Mater. Sci. Eng. B 206, 69–78 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suneetha T..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurram, N., T., R., T., S. et al. Investigation of Superparamagnetism in Microwave and Conventional Processed Mn0.5Zn0.5Fe2O4 Nanoparticles. J Supercond Nov Magn 31, 815–820 (2018). https://doi.org/10.1007/s10948-017-4257-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4257-4

Keywords

Navigation