Skip to main content
Log in

Particle Size-Dependent Zero-Field Exchange Bias in LaFeO 3 Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The present communication deals with particle size-dependent zero-field cooled exchange effect in LaFeO3 (LFO). LFO nanoparticles were prepared by PVA-based sol-gel method. The sample was calcined at different temperatures (700, 750, and 800 C) to tune the average particle size. The detailed crystal structural and their geometrical parameters were examined by means of Rietveld refinement using x-ray diffraction data. The different techniques such as Scherrer’s method, Williamson Hall method, FESEM, and TEM were applied to accurately determine the average particle size. Zero-field cooled exchange bias and weak ferromagnetism in antiferromagnetic nanoparticles was observed for all samples using hysteresis loop measurement. The training effect was studied to confirm that the loop shift originates due to exchange bias. Exchange bias as well as coercivity are strongly related to the particle size at low and room temperature. The results clearly demonstrate that the process of calcination tailor the overall properties of material which makes it a promising candidate for device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kaushik, S., et al.: Exchange Bias in Ball-Milled LaFeO3. In: American Institute of Physics Conference Series (2013)

  2. Hudspeth, J., et al.: Crystal and magnetic structures in perovskite-related La1xCaxFeO3– δ (x = 0.2, 0.33). J. Phys. Chem. Solids 72(12), 1543–1547 (2011)

    Article  ADS  Google Scholar 

  3. Ahmadvand, H., et al.: Exchange bias in LaFeO3 nanoparticles. J. Phys. D: Appl. Phys. 43(24), 245002 (2010)

    Article  ADS  Google Scholar 

  4. Jain, P., Srivastava, S.: Structural investigation and zero-field-cooled exchange bias in nanocrystalline LaFeO3. J. Supercond. Nov. Magn. p. 1–9 (2016)

  5. Lee, Y.-L., et al.: Ab initio energetics of La B O 3 (001)(B = Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes. Phys. Rev. B 80(22), 224101 (2009)

    Article  ADS  Google Scholar 

  6. Jain, P., Srivastava, S.: Investigation of structural, magnetic and electrical properties of pure LaFeO3 synthesized through solution combustion technique. Dig. J. Nanomater. Biostruct. 10(1), 141–147 (2015)

    Google Scholar 

  7. Mukhopadhyay, K., Mahapatra, A., Chakrabarti, P.: Multiferroic behavior, enhanced magnetization and exchange bias effect of Zn substituted nanocrystalline LaFeO 3 (La (1- x) Zn x FeO 3, x = 0.10, and 0.30). J. Magn. Magn. Mater. 329, 133–141 (2013)

    Article  ADS  Google Scholar 

  8. Saad, A.A., et al.: Structural, optical and magnetic properties of perovskite (La1- x Sr x)(Fe1- x Ni x) O3,(x = 0.0, 0.1 & 0. 2) nanoparticles. Electron. Mater. Lett. 9(1), 77–81 (2013)

    Article  ADS  Google Scholar 

  9. Wang, D., Gong, M.: Surface and shape anisotropy effects in LaFeO3 nanoparticles. J. Appl. Phys. 109 (11), 114304 (2011)

    Article  ADS  Google Scholar 

  10. Acharya, S., et al.: Multiferroic behavior of lanthanum orthoferrite (LaFeO 3). Mater. Lett. 64(3), 415–418 (2010)

    Article  Google Scholar 

  11. Nogués, J., Schuller, I.K.: Exchange bias. J. Magn. Magn. Mater. 192(2), 203–232 (1999)

    Article  ADS  Google Scholar 

  12. Huang, S., et al.: Zero-field cooled exchange bias effect in La x Sm 1- x CrO 3 (x = −0.9) ceramics. J. Magn. Magn. Mater. 394, 77–81 (2015)

    Article  ADS  Google Scholar 

  13. Nayak, A., et al.: Large zero-field cooled exchange-bias in bulk Mn 2 PtGa. Phys. Rev. lett. 110(12), 127204 (2013)

    Article  ADS  Google Scholar 

  14. Park, T.-J., et al.: Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7(3), 766–772 (2007)

    Article  ADS  Google Scholar 

  15. Iglesias, O., Labarta, A., Batlle, X.: Exchange bias phenomenology and models of core/shell nanoparticles. J. Nanosci. Nanotechnol. 8(6), 2761–2780 (2008)

    Article  Google Scholar 

  16. Kumar, L., et al.: Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. Int. Nano Lett. 3(1), 1–12 (2013)

    Article  Google Scholar 

  17. Patra, M., Majumdar, S., Giri, S.: Cluster-glass-like state and exchange bias effect in spontaneously phase separated, Pr0. 7Sr0. 3CoO3. J. Appl. Phys. 107(3), 033912 (2010)

    Article  ADS  Google Scholar 

  18. Kodama, R.H., Makhlouf, S.A., Berkowitz, A.E.: Finite size effects in antiferromagnetic NiO nanoparticles. Phys. Rev. Lett. 79(7), 1393 (1997)

    Article  ADS  Google Scholar 

  19. Thakur, M., et al.: Particle size dependent exchange bias and cluster-glass states in LaMn0. 7Fe0. 3O3. J. Phys.: Condens. Matter 20(19), 195215 (2008)

    ADS  Google Scholar 

  20. Seehra, M., Punnoose, A.: Particle size dependence of exchange-bias and coercivity in CuO nanoparticles. Solid State Commun. 128(8), 299–302 (2003)

    Article  ADS  Google Scholar 

  21. Yin, S., et al.: Effect of particle size on the exchange bias of Fe-doped CuO nanoparticles. J. Appl. Phys. 107(4), 3909 (2010)

    Article  Google Scholar 

  22. Qiu, Y., et al.: Size effect on magnetic and dielectric properties in nanocrystalline LaFeO3. J. Mater. Sci. Mater. Electron. 25(2), 760–764 (2014)

    Article  Google Scholar 

  23. Feng, J., et al.: Effects of PVA content on the synthesis of LaFeO 3 via sol–gel route. Ceram. Int. 37(4), 1203–1207 (2011)

    Article  Google Scholar 

  24. Cullity, B.D., Weymouth, J.W.: Elements of x-ray diffraction. Am. J. Phys. 25(6), 394–395 (1957)

    Article  ADS  Google Scholar 

  25. Cullity, B.: Elements of X-Ray Powder Diffraction. Addison–Wesley Publishing Company, Inc., USA (1978)

    MATH  Google Scholar 

  26. Panigrahi, M., Panigrahi, S.: Structural analysis of 100% relative intense peak of Ba 1- xCaxTiO 3 ceramics by X-ray powder diffraction method. Phys. B: Condens. Matter 405(7), 1787–1791 (2010)

    Article  ADS  Google Scholar 

  27. Suryanarayana, C., Norton, M.G.: X-ray diffraction: a practical approach. Springer Science & Business Media (2013)

  28. Mote, V., Purushotham, Y., Dole, B.: Williamson-hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6(1), 1–8 (2012)

    Article  Google Scholar 

  29. Pranat Jain, S.S.: Effect of secondary phases on the structure, morphology and dielectric properties of BiFeO3 synthesized through solution combustion technique. J. Ceram. Process. Res. 17(1), 5–10 (2016)

    Google Scholar 

  30. Zak, A.K., et al.: X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 13(1), 251–256 (2011)

    Article  ADS  Google Scholar 

  31. Chen, Y.-F., et al.: The effect of calcination temperature on the crystallinity of TiO 2 nanopowders. J. Cryst. Growth 247(3), 363–370 (2003)

    Article  ADS  Google Scholar 

  32. Issa, B., et al.: Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 14(11), 21266–21305 (2013)

    Article  Google Scholar 

  33. Fujii, T., et al.: Synthesis and anomalous magnetic properties of LaFeO 3 nanoparticles by hot soap method. Mater. Chem. Phys. 129(3), 805–809 (2011)

    Article  Google Scholar 

  34. De Lima, O., et al.: Magnetic phase separation and cluster-spin-glass behavior in. J. Appl. Phys. 107, 09E107 (2010)

    Article  Google Scholar 

  35. Yao, R., et al.: Lattice mismatch induced strained phase for magnetization, exchange bias and polarization in multiferroic BiFeO 3. RSC Advan. 3(46), 24231–24236 (2013)

    Article  Google Scholar 

  36. Tu, C.-S., et al.: A-site strontium doping effects on structure, magnetic, and photovoltaic properties of (B i1 −x S r x)F e O3 −δ multiferroic ceramics. Ceram. Int. 41(7), 8417–8424 (2015)

    Article  Google Scholar 

  37. Meiklejohn, W.H., Bean, C.P.: New magnetic anisotropy. Phys. Rev. 102(5), 1413 (1956)

    Article  ADS  Google Scholar 

  38. Zhang, H., et al.: Novel behaviors of multiferroic properties in Na-Doped BiFeO 3 nanoparticles. Nanoscale 6(18), 10831–10838 (2014)

    Article  ADS  Google Scholar 

  39. Dhir, G., Uniyal, P., Verma, N.: Effect of particle size on magnetic and dielectric properties of nanoscale Dy-doped BiFeO3. J. Supercond. Nov. Magn. 27(6), 1569–1577 (2014)

    Article  Google Scholar 

  40. Zhu, C., et al.: Exchange bias effect in spin glass CoCr 2 O 4 nanoparticles. J. Magn. Magn. Mater. 393, 116–120 (2015)

    Article  ADS  Google Scholar 

  41. Gupta, R., et al.: Facile synthesis and characterization of nanostructured chromium oxide. Powder Technol. 254, 78–81 (2014)

    Article  Google Scholar 

  42. Gheisari, M., et al.: Observation of small exchange bias in defect wüstite (Fe0. 93O) nanoparticles. J. Supercond. Nov. Magn. 26(2), 237–242 (2013)

    Article  MathSciNet  Google Scholar 

  43. Demirci, E., et al.: Thickness and temperature dependence of exchange bias in Co/CoO bilayers. J. Supercond. Nov. Magn. 25(8), 2591–2595 (2012)

    Article  Google Scholar 

  44. Leighton, C., et al.: Thickness-dependent coercive mechanisms in exchange-biased bilayers. Phys. Rev. B 65 (6), 064403 (2002)

    Article  ADS  Google Scholar 

  45. Ali, K., et al.: Temperature dependence magnetic properties and exchange bias effect in CuFe 2 O 4 nanoparticles embedded in NiO matrix. J. Magn. Magn. Mater. 369, 81–85 (2014)

    Article  ADS  Google Scholar 

  46. Nayak, A.K., et al.: Mn2PtIn: a tetragonal Heusler compound with exchange bias behavior. Appl. Phys. Lett. 100(15), 152404 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranat Jain.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, P., Srivastava, S., Dayal, S. et al. Particle Size-Dependent Zero-Field Exchange Bias in LaFeO 3 Nanoparticles. J Supercond Nov Magn 31, 529–539 (2018). https://doi.org/10.1007/s10948-017-4218-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4218-y

Keywords

Navigation