Skip to main content
Log in

The Effects of Ru and Rh Substitutions on the Magneto-electronic and Optical Properties of the TbNi5 Intermetallic Compound: An Ab Initio Investigation

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this study, we have performed the first-principles investigation of the structural, electronic, magnetic, and optical properties of TbNi5, TbNi3Ru2, and TbNi3Rh2 compounds. The full-potential linearized augmented plane waves with local orbitals method is used in the framework of density functional theory (DFT) employing the generalized gradient approximation (GGA) for the exchange correlation functional as implemented in WIEN2k package. The structural properties are reposed on the evaluation of the equilibrium lattice parameters of these compounds under hexagonal structure such as lattice constants (a and c), bulk modulus (B), and its first pressure derivative \((B^{\prime })\). The spin-polarized electronic structures, including band structure and density of states, are calculated employing the GGA plus band correlated Hubbard parameter (GGA + U) scheme. The results show that density of states and magnetic moment of the pure TbNi5 compound are changed by doping. These changes are observed in the appearance of additional peaks on the spectral density of states (DOS) and in the augmentation of the total magnetic moment of TbNi3 X 2 (X = Ru and Rh) intermetallic compounds. Based on the electronic structure results, the frequency dependents of optical conductivity are estimated in all the spectra and interpreted in the interband optical absorption part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Romaka, V.V., Marciniak, B., Romaka, L., Gorelenko, Y., Pavlyuk, V.: J. Alloy. Comp. 493, L12–L14 (2010)

    Article  Google Scholar 

  2. Kuchin, A.G., Ermolenko, A.S., Khrabrov, V.I., Kourov, N.I., Makarova, G.M., Belozerov, Y.V., Lapina, T.P., Kulikov, Y.A.: J. Magn. Magn. Mater. 29, 238 (2002)

    Google Scholar 

  3. Trémolet de Lacheisserie, E., Gignoux, D., Schlenker, M.: Magnetism: Materials and Applications. Springer, Berlin (2005)

    Book  Google Scholar 

  4. Gschneidner, K.A., Pecharsky, V.K., Tsokol, A.O.: Rep. Progr. Phys. 68, 1479 (2005)

    Article  ADS  Google Scholar 

  5. Mushnikov, N.V.: Phys. Uspekhi 55, 421 (2012)

    Article  ADS  Google Scholar 

  6. Coey, J.M.D.: Magn. IEEE Trans. 47, 4671 (2011)

    Article  ADS  Google Scholar 

  7. Senoh, H., Takeichi, N., Takeshita, H.T., Tanaka, H., Kiyobayashi, T., Kuriyama, N.: Hydrogenation properties of RNi5 (R: rare-earth) intermetallic compounds with multi pressure plateaux. Mater. Trans. 44, 1663–1666 (2003)

    Article  Google Scholar 

  8. Ranke, P.J., Mota, M.A., Grangeia, D.F., Magnus, A., Carvalho, G., Gandra, F.C.G., Coelho, A.A., Caldas, A., Oliveira, N.A., Gama, S.: Magnetocaloric effect in the R Ni5 (R = Pr, Nd,Gd, Tb, Dy, Ho, Er) series. Phys. Rev. B: Condens. Matter Mater. Phys. 70, 134428 (2004)

    Article  ADS  Google Scholar 

  9. Radwański, R.J., Kim-Ngan, N.H., Kayzel, F.E., Franse, J.J.M., Gignoux, D., Schmitt, D., Zhang, F.Y.: The specific heat of ERNi5 and LaNi5. J. Phys.: Condens. Matter 4, 8853–8862 (1992)

    ADS  Google Scholar 

  10. Kayzel, F.E.M., Franse, J.J., Radwański, R.J.: High field magnetization and specific heat of ERNi5. IEEE Trans. Magn. 30, 890–892 (1994)

    Article  ADS  Google Scholar 

  11. Gignoux, D., Schmitt, D.: Commensurability versus incommensurability in rare earth intermetallic compounds. J. Magn. Magn. Mater. 129, 53–58 (1994)

    Article  ADS  Google Scholar 

  12. Gignoux, D., Schmitt, D.: Metamagnetism and complex magnetic phase diagrams of rare earth intermetallics. J. Alloys Compd. 225, 423–431 (1995)

    Article  Google Scholar 

  13. Kuchin, A.G., Ermolenko, A.S., Khrabrov, V.I., Kourov, N.I., Makarova, G.M., Belozerov, Y.V., Lapina, T.P., Kulikov, Y.A.: J. Magn. Magn. Mater. 238, 29 (2002)

    Article  ADS  Google Scholar 

  14. Gignoux, D., NaitSaada, A., de la Bathie, R.P.: Magnetic properties of TbNi and HoNi single crystals. J. Phys. Colloq. 40(C5), 188–190 (1979)

    Article  Google Scholar 

  15. Grechnev, G.E., Desnenko, V.A., Panfilov, A.S., Svechkarev, I.V., Brommer, P.E., Franse, J.J.M., Kayzel, F.E.: Pressure effect on electronic structure and magnetic properties of RNi5. Phys. B 237–238, 532–533 (1997)

    Article  Google Scholar 

  16. Svoboda, P., Vejpravova, J., KimNgan, N.T.H., Kaysel, F.J.: Specific heat study of selected RNi5. J. Magn. Magn. Mater. 272–276, 595–596 (2004)

    Article  Google Scholar 

  17. Galera, R.M., Rogalev, A.: Hard X-ray magnetic circular dichroism in GdNi5 and TbNi5 single crystals. J. Appl. Phys. 85, 4889–4891 (1999)

    Article  ADS  Google Scholar 

  18. de Reotier Dalmas, P., Yaouanc, A., Gubbens, P.C.M., Gignoux, D., Gorges, B., Schmitt, D., Hartmann, O., W⋅⋅appingm, R., Weidinger, A.: Effect of Tb3+ crystal field on the positive muon precession frequency in TbNi5. J. Magn. Magn. Mater. 104–107, 1267–1268 (1992)

    Article  Google Scholar 

  19. Carboni, C., Gignoux, D., Li, Y., Ross, J.W., Tary, A.: The field dependence of the hyperfine splitting of terbium in TbNi5. J. Phys.: Condens. Matter 8, 1763–1774 (1996)

    ADS  Google Scholar 

  20. Goremychkin, E.A., Muhle, E., Ivanitski, P.G., Krotenko, V.T., Pasechkin, M.V., Slisenko, V.V., Vasilkevich, A.A., Lippold, B., Chistyakov, O.D., Savitski, E.M.: Crystal electric field splitting in TbNi5 and ERNi5 studied by inelastic neutron scattering. Phys. Status Solidi B 121, 623–631 (1984)

    Article  ADS  Google Scholar 

  21. Gignoux, D., Rhyne, J.J.: Spin excitations in TbNi5 by inelastic neutron scattering. J. Magn. Magn. Mater. 54–57, 1179–1180 (1986)

    Article  Google Scholar 

  22. Lemaire, R., Paccard, D.: Structure magnétique du composé intermétallique TbNi5. C. R. Acad. Sci. B (Paris) 270, 1131–1133 (1970)

    Google Scholar 

  23. Kuchin, A.G., Ermolenko, A.S., Khrabrov, V.I., Kourov, N.I., Makarova, G.M., Belozerov, Y.V., Lapina, T.P., Kulikov, Y.A.: J. Magn. Magn. Mater. 238, 29 (2002)

    Article  ADS  Google Scholar 

  24. Burzo, E.: Rom. Rep. Phys. 59, 337 (2007)

    Google Scholar 

  25. Burzo, E., Takacs, A., Neumann, M., Chioncel, L.: Phys. Status Solidi C 1, 3343 (2004)

    Article  ADS  Google Scholar 

  26. Blazina, Z., Sorgi, B., Drǎsner, A.: J. Phys.: Condens. Matter 9, 3099 (1997)

    ADS  Google Scholar 

  27. Burzo, E., Takàcs, A., Neumann, M., Chioncel, L.: Phys. Status Solidi (c) 1, 3343 (2004)

    Article  ADS  Google Scholar 

  28. Lizárraga, R., Bergman, A., Björkman, T., Liu, H.P., Andersson, Y., Gustafsson, T., Kuchin, A.G., Er_molenko, A.S., Nordström, L., Eriksson, O.: Phys. Rev. B74, 094419 (2006)

    Article  ADS  Google Scholar 

  29. Falkowski, M., Andrzejewski, B., Kowalczyk, A.: J. Alloys Compd. 442, 155 (2007)

    Article  Google Scholar 

  30. Haldar, A., Dhiman, I., Das, A., Suresh, K.G., Nigam, A.K.: J. Alloys Compd. 509, 3760 (2011)

    Article  Google Scholar 

  31. Nekrasov, I.A., Kokorina, E.E., Galkin, V.A., Kuzmin, Y.u.I., Knyazev, Y.u.V., Kuchin, A.G.: Phys. B 407, 3600 (2012)

    Article  ADS  Google Scholar 

  32. Knyazev, Y.u.V., Lukoyanov, A.V., Kuz′min, Y.u.I., Kuchin, A.G.: Phys. Solid State 55, 385 (2013)

    Article  ADS  Google Scholar 

  33. Wong, K.M., Alay-e-Abbas, S.M., Shaukat, A., Fang, Y., Lei, Y.: J. Appl. Phys. 113, 014304 (2013)

    Article  ADS  Google Scholar 

  34. Wong, K.M., Alay-e-Abbas, S.M., Fang, Y., Shaukat, A., Lei, Y.: J. Appl. Phys. 114, 034901 (2013)

    Article  ADS  Google Scholar 

  35. Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  36. Blaha, P., Schwarz, K., Sorantin, P., Trickey, S.K.: Comput. Phys. Commun. 59, 339 (1990)

    Article  Google Scholar 

  37. Perdew, J.P., Burke, S., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  38. Novak, P., Kunes, J., Chaput, L., Pickett, W.E.: Phys. Status Solidi B 243, 563 (2006)

    Article  ADS  Google Scholar 

  39. Anisimov, V.I., Solovyev, I.V., Korotin, M.A., Czyzyk, M.T., Sawatzky, G.A.: Phys. Rev. B 48, 16929 (1993)

    Article  ADS  Google Scholar 

  40. Petukhov, A.G.: Phys. Rev. B 67, 153106 (2003)

    Article  ADS  Google Scholar 

  41. Buschow, K.H.J.: Rep. Prog. Phys. 40, 1179 (1977)

    Article  ADS  Google Scholar 

  42. Murnaghan, F.D.: Proc. Natl. Acad. Sci. USA 30, 5390 (1944)

    Google Scholar 

  43. Shang, S.L., Wang, Y., Kim, D., Liu, Z.-K.: Mater. Comput. Sci. 47, 1040 (2010)

    Article  Google Scholar 

  44. Goraus, J., Malankiewicz, P.: Acta Phys. Polon. 121, 1077 (2012)

    Google Scholar 

  45. Haldara, A., Dhimanb, I., Dasb, A., Suresha, K.G., Nigamc, A.K.: J. Alloys Compd. 509, 3760–3765 (2011)

    Article  Google Scholar 

  46. Knyazev, Y.V., Kuz’min, Y.I., Kuchin, A.G., Lukoyanov, A.V., Nekrasov, I.A.: Opt. Spectrosc. 104, 3 (2008)

    Article  Google Scholar 

  47. Knyazev, Y.V., Lukoyanov, A.V., Kuz’min, Y.I., Haldar, A., Suresh, K.G.: Opt. Spectrosc. 117, 3 (2014)

    Article  Google Scholar 

  48. Mahan, G.D.: Many Particle Physics. Plenum Press, New York (1990)

    Book  Google Scholar 

  49. Dressel, M., Gruner, G.: Electrodynamics of Solids. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  50. Knyazev, Y.V., Lukoyanov, A.V., Kuz’min, Y.I., Kuchin, A.G.: Phys. Solid State 55, 2 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Murtaza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amine Monir, M.E., Baltach, H., Mouchaal, Y. et al. The Effects of Ru and Rh Substitutions on the Magneto-electronic and Optical Properties of the TbNi5 Intermetallic Compound: An Ab Initio Investigation. J Supercond Nov Magn 31, 547–559 (2018). https://doi.org/10.1007/s10948-017-4211-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4211-5

Keywords

Navigation