Skip to main content
Log in

Study on Microwave Performance of Low-Temperature Sintered, Ba(CoTi)1.5Fe9O19 Ferrite for Application at UHF Frequency

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

M-type barium ferrite, Ba(CoTi)1.5Fe9O19, was synthesized via the solid-state reaction method. BBSZ, i.e., B2O3 −Bi2O3 −SiO2 −ZnO, was added to adjust the sintering temperature to values lower than that of silver (i.e., ∼961 °C). The phase formation characteristics, microstructure, magnetic, and microwave properties were characterized by x-ray diffraction, scanning electron microscope, vibrating sample magnetometer, and impedance analyzer, respectively. The results show that densification of samples were enhanced by increasing the amount of BBSZ with corresponding gains realized in magnetic properties. Such enhanced properties in Ba(CoTi)1.5Fe9O19 are attributed to the low-melting point experienced as the result of BBSZ glass additives which gave rise to the stabilization of a liquid phase during sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Oshima, S., Murata, R.: Compact multiplexer modules for multi-band wireless systems using LTCC technology. IEICE Electronics Express 9(22), 1762–1774 (2012)

    Article  Google Scholar 

  2. Sebastian, M.T., Jantunen, H.: Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53(2), 57–59 (2008)

    Article  Google Scholar 

  3. Kuang, X., Carotenuto, G., Nicolais, L.: A review of ceramic sintering and suggestions on reducing sintering temperatures. Adv. Perform. Mater. 4, 257–260 (1997)

    Article  Google Scholar 

  4. Huang, C.-L., Weng, M.-H.: Improved high Q value of MgTiO3- CaTiO3 microwave dielectric ceramics at low sintering temperature. Mater. Res. Bull. 36, 2741–2750 (2001)

    Article  Google Scholar 

  5. Brandt, B., Naghib-Zadeh, H., Rabe, T.: Improved co-firing of ferrite and dielectric tape based on master sintering curve predictions and shrinkage mismatch calculations. J. Am. Ceram. Soc. 96(3), 726–730 (2013)

    Article  Google Scholar 

  6. Liao, Y., Xu, F., Zhang, D., Zhou, T., Wang, Q., Jia, L., Li, J., Su, H., Zhong, Z., Zhang, H.: Low temperature firing of Li0.43Zn0.27Ti0.13Fe2.17O4 ferrites with enhanced magnetic properties. J. Am. Ceram. Soc. 98(8), 2556–2560 (2015)

    Article  Google Scholar 

  7. Bray, J.R., Kautio, K. T., Roy, L.: Characterization of an experimental ferrite LTCC tape system for microwave and millimeter-wave applications. IEEE Trans. Adv. Packag. 27, 558–565 (2004)

    Article  Google Scholar 

  8. Kim, C.-Y., Kim, H.-J., Kim, J.-R.: An integrated LTCC inductor. IEEE Trans. Magn. 41, 3556–3558 (2005)

    Article  ADS  Google Scholar 

  9. Harris, V.G., Geiler, A., Chen, Y., Yoon, S.D., Wu, M., Yang, A., Chen, Z., He, P., Parimi, P.V., Zuo, X., Patton, C.E., Abe, M., Acher, O., Vittoria, C.: Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009)

    Article  ADS  Google Scholar 

  10. Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012)

    Article  Google Scholar 

  11. Batlle, X., Obradors, X., Rodríguez-Cavajal, J., Pernet, M., Cabañas, M.V., Vallet, M.: Cation distribution and intrinsic magnetic properties of Co-Ti-doped M-type barium ferrite. J. Appl. Phys. 70, 1615 (1991)

    ADS  Google Scholar 

  12. Hong, Y.S., Ho, C.M., Hsu, H.Y., Liu, C.T.: Synthesis of nanocrystalline Ba(MnTi)xFe12−2xO19 powders by the sol-gel combustion method in citrate acid-metal nitrates system (x = 0, 0.5, 1.0, 1.5 2.0). J. Magn. Magn. Mater. 279, 401–407 (2004)

    Article  ADS  Google Scholar 

  13. Yang, Q., Zhang, H., Liu, Y., Wen, Q.: Microstructure and magnetic properites of microwave sintered m-type barium ferrite for application in LTCC devices. Mater. Lett. 63, 406–408 (2008)

    Article  Google Scholar 

  14. Ovtar, S., Le Gallet, S., Minier, L., Millot, N., Lisjak, D.: Control of barium ferrite decomposition during spark plasma sintering: towards nanostructured samples with anisotropic magnetic properties. J. Eur. Ceram. Soc. 34, 338 (2014)

    Article  Google Scholar 

  15. Chen, D., Liu, Y., Li, Y., Zhong, W., Zhang, H.: Low-temperature sintering of m-type barium ferrite with BaCu(B2O5) additive. J. Magn. Magn. Mater. 324, 449–452 (2011)

    Article  ADS  Google Scholar 

  16. Zheng, Z., Zhang, H.: Complex permittivity and permeability of low-temperature sintered m-type barium hexaferrite in ka-band frequency range. IEEE Trans. Magn. 49, 4230–4233 (2013)

    Article  ADS  Google Scholar 

  17. Yuan-xun, L., Yingli, L., Huai-wu, Z., Han, L.-k.: The sintering properties and interfacial investigation of barium ferrite and ceramic cofiring system for the application of LTCC technology. J. Appl. Phys. 105, 07A745 (2009)

    Article  Google Scholar 

  18. Li, J., Zhang, H., Liu, Y., Ma, G., Li, Q.: Low-temperature co-fired ni-ti co-substituted barium ferrites. J. Compos. Mater. 50(2), 173–178 (2016)

    Article  ADS  Google Scholar 

  19. Thomas, S., Sebastian, M.T.: Effect of B2O3-Bi2O3-SiO2-ZnO glass on the sintering and microwave dielectric properties of 0.83 ZnAl2O4-0.17TiO2. Mater. Res. Bull 43, 843–851 (2008)

    Article  Google Scholar 

  20. Hsiang, H.-I., Chen, T.-H.: Dielectric and magnetic properties of low-temperature-fired ferrite-dielectric composite. J. Am. Ceram. Soc. 91, 2043–2046 (2008)

    Article  Google Scholar 

  21. Hsiang, H.-I., Chen, T.-H.: Electrical properties of low-temperature-fired ferrite–dielectric composites. Ceram. Int. 35(5), 2035–2039 (2009)

    Article  Google Scholar 

  22. Shirsath, S.E., Yasukawa, Y., Ghasemi, A., Liu, X., Morisako, A.: Bi2O3 liquid phase assisted and mn substituted permeability and magnetic properties of ni-cu-zn ferrite for multilayer chip inductor application. J. Appl. Phys. 115, 17A515 (2014)

    Article  Google Scholar 

  23. Ebrahimi, Y., Sabbagh Alvani, A.A., Sarabi, A.A., Sameie, H., Salimi, R., Sabbagh Alvani, M., Moosakhani, S.: A comprehensive study on the magnetic properties of nanocrystalline SrCo0.2Fe11.8O19 ceramics synthesized via diverse routes. Ceram. Int. 38, 3887 (2012)

    Article  Google Scholar 

  24. Teo, M.L.S., Kong, L.B., Li, Z.W., Lin, G.Q., Gan, Y.B.: Development of magneto-dielectric materials based on Li-ferrite ceramics I. Densification behavior and microstructure development. J. Alloys Compd. 459, 565 (2008)

    Article  Google Scholar 

  25. Nakamura, T.: Sonek’s limit in high-frequency permeability of polycrystalline Ni-Zn, Mg-Zn, and Ni-Cu-Zn spinel ferrites. J. Appl. Phys. 88, 350 (2000)

    Article  ADS  Google Scholar 

  26. Li, Z.W., Chen, L.: Studies of static and high-frequency magnetic properties for M-type ferrite BaFe12−2xCoxZrxO19. J. Appl. Phys. 92, 3902–3906 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61371053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingli Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, Y., Wu, C. et al. Study on Microwave Performance of Low-Temperature Sintered, Ba(CoTi)1.5Fe9O19 Ferrite for Application at UHF Frequency. J Supercond Nov Magn 31, 455–461 (2018). https://doi.org/10.1007/s10948-017-4156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4156-8

Keywords

Navigation