Skip to main content
Log in

Effect of sintering temperature on magnetoelectric properties of barium ferrite ceramics

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

As a new functional material, multiferroic materials have attracted much attention in recent years. In this paper, BaFe12O19 (BaM) ceramics were prepared by the sol–gel method sintered at different temperatures. The effect of sintering temperature on microstructure, surface morphology, dielectric properties, ferroelectric properties and magnetic properties of BaM ceramics were systematically studied. XRD results show that the main diffraction peaks are attributed to BaM ceramics. SEM results show that the grain size of ceramics increases from 0.82 to 1.15 μm with the sintering temperature increase from 1150 to 1300 °C. At room temperature, when the sintering temperature is 1150 °C, the residual polarization, saturation magnetization and residual magnetization of ceramics reach the maximum, which are 0.064 μC/cm2, 67.145 emu/g, 34.722 emu/g, respectively. The changes of dielectric and ferroelectric properties under applied magnetic field indicate that BaM ceramics have certain magnetoelectric response, which provides a new direction for the development and application of BaM devices.

Graphical abstract

The effect of sintering temperature on the multiferroic properties of hexagonal barium ferrite (BaM) ceramics was studied. The ferroelectric and magnetic hysteresis loops of the ceramics indicate the room temperature multiferroic properties of the prepared ceramics. The effect of leakage current on ferroelectric properties of ceramics was also studied. It lays a foundation for the study of single-phase multiferroic materials at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The datasets and material generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, W. Cai, G. Chen, X.L. Deng, X.L. Cao, X.D. Luo, C.L. Fu, Nanoscale 10(26), 11750–11759 (2018). https://doi.org/10.1039/C8NR02368A

    Article  CAS  Google Scholar 

  2. H. Wu, H. Ao, W.C. Li, Z.X. Zeng, R.L. Gao, C.L. Fu, G. Chen, X.L. Deng, Z.H. Wang, X. Lei, W. Cai, Mater. Today Chem. 21, 100511 (2021). https://doi.org/10.1016/j.mtchem.2021.100511

    Article  CAS  Google Scholar 

  3. R.L. Gao, L. Bai, Z.Y. Xu, Q.M. Zhang, Z.H. Wang, W. Cai, G. Chen, X.L. Deng, C.L. Fu, Adv. Electron. Mater. 4(6), 1800030 (2018). https://doi.org/10.1002/aelm.201800030

    Article  CAS  Google Scholar 

  4. H. Wu, Z.X. Zeng, S.L. Xing, M.S. Lan, W.C. Li, Q. Zhang, H. Ao, C. Zhou, R.C. Xu, R.L. Gao, X.L. Deng, Adv. Eng. Mater. (2021). https://doi.org/10.1002/adem.202100410

    Article  Google Scholar 

  5. R.L. Gao, H.W. Yang, J.R. Sun, Y.G. Zhao, B.G. Shen, Appl. Phys. Lett. 104, 031906 (2014). https://doi.org/10.1063/1.4862793

    Article  CAS  Google Scholar 

  6. C.Y. Li, R.C. Xu, R.L. Gao, Z.H. Wang, G. Chen, X.L. Deng, W. Cai, C.L. Fu, Q.T. Li, Mater. Chem. Phys. 249, 123144 (2020). https://doi.org/10.1016/j.matchemphys.2020.123144

    Article  CAS  Google Scholar 

  7. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55–58 (2003). https://doi.org/10.1038/nature02018

    Article  CAS  Google Scholar 

  8. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Nature 429, 392–395 (2004). https://doi.org/10.1038/nature02572

    Article  CAS  Google Scholar 

  9. J.W. Kim, S.Y. Haam, Y.S. Oh, K.H. Kim, P. Natl, Proc. Natl. Acad. Sci 106, 15573–15576 (2009). https://doi.org/10.1073/pnas.0907589106

    Article  Google Scholar 

  10. J.M. Liu, S. Dong, J. Adv. Dielectr 5, 1530003 (2015). https://doi.org/10.1142/S2010135X15300030

    Article  CAS  Google Scholar 

  11. S. Prathap, W. Madhuri, J. Magn. Magn. Mater 430, 114–122 (2017). https://doi.org/10.1016/j.jmmm.2016.12.116

    Article  CAS  Google Scholar 

  12. A. Shayan, M. Abdellahi, F. Shahmohammadian, S. Jabbarzare, A. Khandan, H. Ghayour, J. Alloys Compd 708, 538–546 (2017). https://doi.org/10.1016/j.jallcom.2017.02.305

    Article  CAS  Google Scholar 

  13. G.L. Tan, X.N. Chen, J. Magn. Magn. Mater 327, 87–90 (2013). https://doi.org/10.1016/j.jmmm.2012.09.047

    Article  CAS  Google Scholar 

  14. S. Díaz-Castañón, L.J.L. Sánchez, E. Estevez-Rams, F. Leccabue, B.E. Watts, J. Magn. Magn. Mater 185, 194–198 (1998). https://doi.org/10.1016/S0304-8853(98)00013-4

    Article  Google Scholar 

  15. R.J. Tang, H. Zhou, W.L. You, H. Yang, Appl. Phys. Lett 109, 082903 (2016). https://doi.org/10.1063/1.4961615

    Article  CAS  Google Scholar 

  16. T. Kaur, J. Sharma, S. Kumar, A.K. Srivastava, Cryst. Res. Technol 52, 1700098 (2017). https://doi.org/10.1002/crat.201700098

    Article  CAS  Google Scholar 

  17. S. Anjum, M. Sattar, Z. Mustafa, J. Mater. Sci. Mater. Electron 32, 232–245 (2021). https://doi.org/10.1007/s10854-020-04759-9

    Article  CAS  Google Scholar 

  18. G.B. Teh, Y.C. Wong, R.D. Tilley, J. Magn. Magn. Mater 323, 2318–2322 (2011). https://doi.org/10.1016/j.jmmm.2011.04.014

    Article  CAS  Google Scholar 

  19. Y. Liu, M.G.B. Drew, J.P. Wang, M.L. Zhang, Y. Liu, J. Magn. Magn. Mater 22, 366–374 (2010). https://doi.org/10.1016/j.jmmm.2009.09.062

    Article  CAS  Google Scholar 

  20. R.C. Pullar, Prog. Mater. Sci 57, 1191–1334 (2012). https://doi.org/10.1016/j.pmatsci.2012.04.001

    Article  CAS  Google Scholar 

  21. A. Ashrafizadeh, A. Ghasemi, A. Paesano Jr., X. Liu, A. Morisako, J. Meteorol. Soc. Jpn. 34, 489–492 (2010). https://doi.org/10.3379/msjmag.1006R004

    Article  CAS  Google Scholar 

  22. X. Li, G.L. Tan, J. Alloys Compd 858, 157722 (2021). https://doi.org/10.1016/j.jallcom.2020.157722

    Article  CAS  Google Scholar 

  23. P. Ren, J.G. Guan, X.D. Cheng, Mater. Chem. Phys 98, 90–94 (2006). https://doi.org/10.1016/j.matchemphys.2005.08.070

    Article  CAS  Google Scholar 

  24. G. Benito, M.P. Morales, J. Requena, V. Raposo, M. Vázquez, J.S. Moya, J. Magn. Magn. Mater 234, 65 (2001). https://doi.org/10.1016/S0304-8853(01)00288-8

    Article  CAS  Google Scholar 

  25. S. Mandizadeh, F. Soofivand, M. Salavati-Niasari, Adv. Powder. Technol 26, 1348 (2015). https://doi.org/10.1016/j.apt.2015.07.009

    Article  CAS  Google Scholar 

  26. A. Ataie, S. Heshmati-Manesh, H. Kazempour, J. Mater. Sci 37, 2125 (2002). https://doi.org/10.1023/A:1015254221872

    Article  CAS  Google Scholar 

  27. G.Z. Shen, X.U. Zheng, L.I. Yi, J. Mater. Sci. Eng 23, 521 (2005). https://doi.org/10.3969/j.issn.1673-2812.2005.05.012

    Article  CAS  Google Scholar 

  28. R.L. Gao, X.F. Qin, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, C.L. Fu, G. Chen, X.L. Deng, W. Cai, Mater. Chem. Phys. 232, 428–437 (2019). https://doi.org/10.1016/j.matchemphys.2019.05.016

    Article  CAS  Google Scholar 

  29. H. Wu, W.C. Li, H. Ao, Z.X. Zeng, X.F. Qin, S.L. Xing, C. Zhou, R.L. Gao, X.L. Deng, W. Cai, G. Chen, Z.H. Wang, X. Lei, C.L. Fu, J. Alloys Compd. 896, 162932 (2021). https://doi.org/10.1016/j.jallcom.2021.162932

    Article  CAS  Google Scholar 

  30. R.L. Ga, Z.H. Wang, G. Chen, X.L. Deng, W. Cai, C.L. Fu, Ceram. Int. 44, S84–S87 (2018). https://doi.org/10.1016/j.ceramint.2018.08.234

    Article  CAS  Google Scholar 

  31. X.F. Qin, H. Wu, C.Y. Chen, H. Ao, W.C. Li, R.L. Gao, W. Cai, G. Chen, X.L. Deng, Z.H. Wang, X. Lei, C.L. Fu, J. Alloys Compd. 890, 161869 (2021). https://doi.org/10.1016/j.jallcom.2021.161869

    Article  CAS  Google Scholar 

  32. R.C. Xu, Z.H. Wang, R.L. Gao, S.L. Zhang, Q.W. Zhang, Z.D. Li, C.Y. Li, G. Chen, X.L. Deng, W. Cai, C.L. Fu, J. Mater. Sci. Mater. Electron. 29, 16226–16237 (2018). https://doi.org/10.1007/s10854-018-9712-x

    Article  CAS  Google Scholar 

  33. H. Wu, R.C. Xu, C. Zhou, S.L. Xing, Z.X. Zeng, H. Ao, W.C. Li, X.F. Qin, R.L. Gao, J. Phys. Chem. Solids 160, 110314 (2022). https://doi.org/10.1016/j.jpcs.2021.110314

    Article  CAS  Google Scholar 

  34. R.C. Xu, S.L. Zhang, F.Q. Wang, Q.W. Zhang, Z.D. Li, Z.H. Wang, R.L. Gao, C.L. Fu, J. Electron. Mater. 48(1), 386–400 (2019). https://doi.org/10.1007/s11664-018-6718-3

    Article  CAS  Google Scholar 

  35. Y.Z. Xue, R.C. Xu, Z.H. Wang, R.L. Gao, C.Y. Li, G. Chen, X.L. Deng, W. Cai, C.L. Fu, J. Electron. Mater. 48(8), 4806–4817 (2019). https://doi.org/10.1007/s11664-019-07261-z

    Article  CAS  Google Scholar 

  36. R.L. Gao, Q.Z. Leng, Z.H. Wang, G. Chen, C.L. Fu, X.L. Deng, W. Cai, Mater. Res. Express 6, 026308 (2018). https://doi.org/10.1088/2053-1591/aaeefc

    Article  CAS  Google Scholar 

  37. S. Giordano, Y. Dusch, N. Tiercelin, P. Pernod, V. Preobrazhensky, J. Phys. D 46, 325002 (2013). https://doi.org/10.1088/0022-3727/46/32/325002

    Article  CAS  Google Scholar 

  38. B. Raneesh, H. Soumya, J. Philip, S. Thomas, K. Nandakumar, J. Alloys Compd 611, 381 (2014). https://doi.org/10.1016/j.jallcom.2014.05.155

    Article  CAS  Google Scholar 

  39. N.S. Negi, R. Kumar, H. Sharma, J. Shah, R.K. Kotnala, J. Magn. Magn. Mater 456, 292 (2018). https://doi.org/10.1016/j.jmmm.2017.12.095

    Article  CAS  Google Scholar 

  40. R.L. Gao, X.F. Qin, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, C.L. Fu, G. Chen, X.L. Deng, W. Cai, J. Alloys Compd 795, 501 (2019). https://doi.org/10.1016/j.jallcom.2019.05.013

    Article  CAS  Google Scholar 

  41. G.L. Tan, W. Li, J. Am. Ceram. Soc 98, 1812 (2015). https://doi.org/10.1111/jace.13530

    Article  CAS  Google Scholar 

  42. G.L. Tan, Y. Huang, H.H. Sheng, PLoS ONE 11, e0167084 (2016). https://doi.org/10.1371/journal.pone.0167084

    Article  CAS  Google Scholar 

  43. W. Cai, J.C. Gao, C.L. Fu, L.W. Tang, J. Alloys Compd 487, 668 (2009). https://doi.org/10.1016/j.jallcom.2009.08.034

    Article  CAS  Google Scholar 

  44. R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, G. Chen, X.L. Deng, C.L. Fu, W. Cai, Composites B 166, 204 (2019). https://doi.org/10.1016/j.compositesb.2018.12.010

    Article  CAS  Google Scholar 

  45. F.Q. Wang, W. Cai, C.L. Fu, R.L. Gao, Z.H. Wang, G. Chen, X.L. Deng, J. Mater. Sci-Mater. El 30, 2177 (2019). https://doi.org/10.1007/s10854-018-0489-8

    Article  CAS  Google Scholar 

  46. A.R. Abraham, B. Raneesh, S. Joseph, P.A. Mohammed, P.M.G. Nambissan, D. Das, D. Rouxel, O.S. Oluwafemi, S. Thomas, N. Kalarikkal, Phys. Chem. Chem. Phys 21, 8709 (2019). https://doi.org/10.1039/C8CP04946G

    Article  CAS  Google Scholar 

  47. H.B. Sharma, K.N. Devi, V. Gupta, J.H. Lee, S.S. Bobby, J. Alloy. Compd 599, 32 (2014). https://doi.org/10.1016/j.jallcom.2014.02.024

    Article  CAS  Google Scholar 

  48. B.C. Brightlin, S. Balamurugan, J. Supercond. Nov. Magn 30, 215 (2017). https://doi.org/10.1007/s10948-016-3703-z

    Article  CAS  Google Scholar 

  49. K. Polley, R. Kundu, J. Bera, Int. J. Environ. Anal. Chem (2021). https://doi.org/10.1080/03067319.2021.1887165

    Article  Google Scholar 

  50. R. Pattanayak, R. Subhajit, T. Dash, S. Mohapatra, R. Muduli, S. Panigrahi, Physica. B 485, 67 (2016). https://doi.org/10.1016/j.physb.2017.02.013

    Article  CAS  Google Scholar 

  51. M. Drofenik, I. Ban, G. Ferk, D. Makovec, A. Žnidaršič, Z. Jagličić, D. Lisjak, J. Am. Ceram. Soc 93, 1602 (2010). https://doi.org/10.1111/j.1551-2916.2010.03620.x

    Article  CAS  Google Scholar 

  52. J.C.F. Gandarilla, S. Dı́az-Castañón, N.S. Almodovar, J. Magn. Magn. Mater 222, 271 (2000). https://doi.org/10.1016/S0304-8853(00)00431-5

    Article  Google Scholar 

  53. S.E. Jacobo, L. Civale, M.A. Blesa, J. Magn. Magn. Mater. 260, 37 (2003). https://doi.org/10.1016/S0304-8853(01)00924-6

    Article  CAS  Google Scholar 

  54. J. Ding, W.F. Miao, P.G. McCormick, R. Street, J. Alloy. Compd. 281, 32 (1998). https://doi.org/10.1016/S0925-8388(98)00766-X

    Article  CAS  Google Scholar 

  55. L. Rezlescu, E. Rezlescu, P.D. Popa, N. Rezlescu, J. Magn. Magn. Mater. 193, 288 (1999). https://doi.org/10.1016/S0304-8853(98)00442-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work has been supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-M201901501), the Chongqing Research Program of Basic Research and Frontier Technology (cstc2019jcyj-msxmX0071, cstc2021jcyj-msxmX0008, cstc2021jcyj-msxmX0039, cstc2021jcyj-msxmX0599), the Program for Creative Research Groups in University of Chongqing (CXQT19031), the Natural Science Foundation of Chongqing (cstc2020jcyj-zdxmX0008, cstc2020jcyj-msxmX0030), the Leading Talents of Scientific and Technological Innovation in Chongqing (CSTCCXLJRC201919), the special project of Chongqing technology innovation and application development (cstc2020jscx-msxmX0218), the Research Foundation of Chongqing University of Science and Technology (No. Ckrc2019020), the special project for technological innovation and application development of Chongqing Science and technology enterprises (cstc2021kqjscx-phxmX0008), the Postgraduate Technology Innovation Project of the Chongqing University of Science and Technology (Grant No. 2021187), and the Postgraduate technology innovation project of Chongqing University of Science & Technology (YKJCX2120525, YKJCX2120510, YKJCX2120531, YKJCX2120201).

Author information

Authors and Affiliations

Authors

Contributions

ML: Conceptualization, Methodology, Investigation, Writing—original draft. ZZ: Validation, Formal analysis, Visualization. QZ: Validation, Formal analysis, Visualization, Writing—review and editing. GS: Validation, Formal analysis,—review and editing. HW: Resources, Writing—review and editing. HA: Resources, Writing—review and editing. XD, RG: Formal analysis, Writing—review and editing. WC, ZW: Writing—review and editing. CF: Resources, Writing—review and editing, Supervision, Data curation. XL: Resources, Writing—review and editing, Supervision, Data curation. GC: Writing—review and editing.

Corresponding authors

Correspondence to Xiaoling Deng or Rongli Gao.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

No human and/or animal studies are involved. Manuscript is approved by all authors for publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 206 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, M., Zeng, Z., Zhang, Q. et al. Effect of sintering temperature on magnetoelectric properties of barium ferrite ceramics. Journal of Materials Research 37, 2837–2847 (2022). https://doi.org/10.1557/s43578-022-00679-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00679-y

Keywords

Navigation