Skip to main content
Log in

Preparation and Characterization of Magnetite–Chitosan Nanoparticles and Evaluation of Their Cytotoxicity Effects on MCF7 and Fibroblast Cells

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Nowadays, magnetic nanoparticles play a key role in drug treatment. However, if they are uncoated, they might aggregate and cause embolism in drug delivery. To avoid this, they are generally coated with polymers. In this investigation, magnetic nanoparticles (MNPs) were coated with chitosan through in situ co-precipitation process and their properties in addition to their cytotoxicity in MCF7 and fibroblast cells were analyzed. The results showed MNPs–chitosan nanoparticles would contain an average mean diameter of 32 nm and a saturation magnetization (M S) value of 38.87 emu/g. To characterize the synthesized nanoparticles in terms of structural, morphological and magnetic properties, Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA) and vibrating sample magnetometry (VSM) studies were used. Toxicity test was also done to investigate whether their presence would cause any toxicity in the body; in addition, antibacterial assay was done to analyze if nanoparticles could be used as an antimicrobial agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bahari, A., Roeinfard, M., Ramzannezhad, A.: Characteristics of Fe3O4/ZnO nanocomposite as a possible gate dielectric of nanoscale transistors in the field of cyborg. J. Mater. Sci. Mater. Electron. 27(9), 9363–9369 (2016)

    Article  Google Scholar 

  2. Ghadi, A., Mahjoub, S., Tabandeh, F., Talebnia, F.: Synthesis and optimization of nano-magnetic chitosan: potential applications in nanomedicine and biomedical engineering. Caspian J. Intern. Med. 5(3), 156–161 (2014)

    Google Scholar 

  3. Mouaziz, H., Veyret, R., Theretz, A., Ginot, F., Elaissari, A.: Aminodextran containing magnetite nanoparticles for molecular biology applications: preparation and evaluation. J. Biomed. Nanotechnol. 5(2), 172–181 (2009)

    Article  Google Scholar 

  4. Lang, C., Schüler, D., Faivre, D.: Synthesis of magnetite nanoparticles for bio- and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes. Macromol. Biosci. 7(2), 144–151 (2007)

    Article  Google Scholar 

  5. Ghadi, A., Tabandeh, F., Mahjoub, S., Mosanifar, A., Talebnia, F., Shafiee-Alavije, R.: Fabrication and characterization of core-shell magnetic chitosan nanoparticles as a novel carrier for immobilization of Burkholderia cepacia lipase. J. Oleo. Sci. 64(4), 423–430 (2015)

    Article  Google Scholar 

  6. Jain, T.K., Richey, J., Strand, M., Leslie-Pelecky, D.L., Flask, C.A., Labhasetwar, V.: Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 29(29), 4012–4021 (2008)

    Article  Google Scholar 

  7. Mou, X., Ali, Z., Li, S., He, N.: Applications of magnetic nanoparticles in targeted drug delivery system. J. Nanosci. Nanotechnol. 15(1), 54–62 (2015)

    Article  Google Scholar 

  8. Oh, J.K., Park, J.M.: Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog. Polym. Sci. 36(1), 168–189 (2011)

    Article  Google Scholar 

  9. Sitthichai, S., Pilapong, C., Thongtem, T., Thongtem, S.: CMC-Coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma. Appl. Surf. Sci. 356, 972–977 (2015)

    Article  ADS  Google Scholar 

  10. Soares, P.I., Laia, C.A., Carvalho, A., Pereira, L.C., Coutinho, J.T., Ferreira, I.M., Borges, J.P.: Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications. Appl. Surf. Sci. 383, 240–247 (2016)

    Article  ADS  Google Scholar 

  11. Sun, C., Lee, J.S., Zhang, M.: Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 60(11), 1252–1265 (2008)

    Article  Google Scholar 

  12. Shete, P.B., Patil, R.M., Thorat, N.D., Prasad, A., Ningthoujam, R.S., Ghosh, S.J., Pawar, S.H.: Magnetic chitosan nanocomposite for hyperthermia therapy application: preparation, characterization and in vitro experiments. Appl. Surf. Sci. 288, 149–157 (2014)

    Article  ADS  Google Scholar 

  13. Alphandéry, E.: Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Front. Bioeng. Biotechnol. 2, 5 (2014)

    Google Scholar 

  14. Amrollahi, P., Ataie, A., Nozari, A., Seyedjafari, E., Shafiee, A.: Cytotoxicity evaluation and magnetic characteristics of mechano-thermally synthesized CuNi nanoparticles for hyperthermia. J. Mater. Eng. Perform. 24 (3), 1220–1225 (2015)

    Article  Google Scholar 

  15. Hanini, A., Lartigue, L., Gavard, J., Kacem, K., Wilhelm, C., Gazeau, F., Ammar, S.: Zinc substituted ferrite nanoparticles with Zn0.9Fe2.1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells. J. Magn. Magn. Mater. 416, 315–320 (2016)

    Article  ADS  Google Scholar 

  16. Jordan, A., Scholz, R., Wust, P., Fähling, H., Felix, R.: Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater. 201(1), 413–419 (1999)

    Article  ADS  Google Scholar 

  17. Mamiya, H.: Recent advances in understanding magnetic nanoparticles in AC magnetic fields and optimal design for targeted hyperthermia. J. Nanomater., 2013 (2013)

  18. Goodwin, S., Peterson, C., Hoh, C., Bittner, C.: Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy. J. Magn. Magn. Mater. 194(1), 132–139 (1999)

    Article  ADS  Google Scholar 

  19. Brollo, M.E.F., Orozco-Henao, J.M., López-Ruiz, R., Muraca, D., Dias, C.S.B., Pirota, K.R., Knobel, M.: Magnetic hyperthermia in brick-like Ag@Fe3O4 core–shell nanoparticles. J. Magn. Magn. Mater. 397, 20–27 (2016)

    Article  ADS  Google Scholar 

  20. Kikumori, T., Kobayashi, T., Sawaki, M., Imai, T.: Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes. Breast Cancer Res. Treat. 113(3), 435 (2009)

    Article  Google Scholar 

  21. Chang, P.E., Purushotham, S., Rumpel, H., Kee, I.H.C., Ng, R.T.H.: Novel dual magnetic drug targeting and hyperthermia therapy in hepatocellular carcinoma with thermosensitive polymer-coated nanoparticles. J. Gastroint. Dig. Syst. 4(198), 2 (2014)

    Google Scholar 

  22. Tartaj, P., Veintemillas-Verdaguer, S., Serna, C.J.: The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 36(13), R182 (2003)

    Article  Google Scholar 

  23. Hergt, R., Hiergeist, R., Hilger, I., Kaiser, W.A., Lapatnikov, Y., Margel, S., Richter, U.: Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J. Magn. Magn. Mater. 270(3), 345–357 (2004)

    Article  ADS  Google Scholar 

  24. Daemi, S., Ashkarran, A.A., Bahari, A., Ghasemi, S.: Gold nanocages decorated biocompatible amine functionalized graphene as an efficient dopamine sensor platform. J. Colloid Interface Sci. 494, 290–299 (2017)

    Article  ADS  Google Scholar 

  25. Deaver, B.S. Jr, Bucelot, T.J., Finley, J.J.: SQUIDs for measuring the magnetic properties of materials. In: Deaver, B.S. Jr, Falco, C.M., Harris, J.H., Wolf, S.A. (eds.) AIP conference proceedings (Vol. 44, No. 1, pp. 58-72). AIP (1978)

    Google Scholar 

  26. West, K.G., Osofsky, M., Mazin, I.I., Dao, N.N., Wolf, S.A., Lu, J.: Magnetic properties and spin polarization of Ru doped half metallic CrO2. Appl. Phys. Lett. 107(1), 012402 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank the staff of the Cellular and Molecular Biology Research Center of Babol University of Medical Sciences, Babol, Iran, for their valuable cooperation in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Bahari.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfi, S., Ghaderi, F., Bahari, A. et al. Preparation and Characterization of Magnetite–Chitosan Nanoparticles and Evaluation of Their Cytotoxicity Effects on MCF7 and Fibroblast Cells. J Supercond Nov Magn 30, 3431–3438 (2017). https://doi.org/10.1007/s10948-017-4094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4094-5

Keywords

Navigation