Skip to main content
Log in

Prediction of Magnetocaloric Effect by a Phenomenological Model and Critical Behavior for La0.78Dy0.02Ca0.2MnO3 Compound

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The La0.78Dy0.02Ca0.2MnO3 (LDCMO) compound prepared via high-energy ball-milling (BM) presents a ferromagnetic-to-paramagnetic transition (FM-PM) and undergoes a second-order phase transition (SOFT). Based on a phenomenological model, magnetocaloric properties of the LDCMO compound have been studied. Thanks to this model, we can predict the values of the magnetic entropy change ΔS, the full width at half-maximum δ T FWHM, the relative cooling power (RCP), and the magnetic specific heat change ΔC p for our compound. The significant results under 2 T indicate that our compound could be considered as a candidate for use in magnetic refrigeration at low temperatures. In order to further understand the FM-PM transition, the associated critical behavior has been investigated by magnetization isotherms. The critical exponents estimated by the modified Arrott plot, the Kouvel–Fisher plot, and the critical isotherm technique are very close to those corresponding to the 3D-Ising standard model (β = 0.312 ± 0.07, γ = 1.28 ± 0.02, and δ = 4.80).Those results revealed a long-range ferromagnetic interaction between spins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ramirez, A.P.: Colossal-magnetoresistance. J. Phy: Condens. Matter 9, 8171–8199 (1997)

    ADS  Google Scholar 

  2. Nagaev, E.L.: Colossal magnetoresistance materials: manganites and conventional ferromagnetic semiconductors. Phys. Rep. 346, 387 (2001)

    Article  ADS  Google Scholar 

  3. Zener, C.: Interaction between d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82 (1951)

  4. Millis, A.J., Littlewood, P.B., Shraiman, B.I.: Double exchange alone does not explain the resistivity of La1−x Sr x MnO3. Phys. Rev. Lett. 74, 5144 (1995)

    Article  ADS  Google Scholar 

  5. Mori, S., Chen, C. H., Cheong, S.W.: Paired and unpaired charge stripes in the ferromagnetic phase of La0.5Ca0.5MnO3. Phys. Rev. Lett. 81, 3972 (1998)

    Article  ADS  Google Scholar 

  6. Prinz, G.A: Spin-polarized transport. Phys. Today 48, 58 (1995)

    Article  Google Scholar 

  7. Tomioka, Y., Asamitsu, A., Moritomo, Y., Kuwahara, H., Tokura, Y.: Collapse of a charge-ordered state under a magnetic field in Pr1/2Sr1/2MnO3. Phys. Rev. Lett. 74, 5108 (1995)

    Article  ADS  Google Scholar 

  8. Khiem, N. V., Phong, P. T., Bau, L. V., Nam, D. N. H., Hong, L. V., Phuc, N. X.: Critical parameters near the ferromagnetic-paramagnetic phase transition in La0.7A0.3(Mn1−x b x )O3(A = Sr; B = Ti and Al; x = 0.0 and 0.05) compounds. J. Magn. Magn. Mater. 321, 2027 (2009)

    Article  ADS  Google Scholar 

  9. Stanley, H.E: Introduction to phase transitions and critical phenomena. Oxford University Press, London (1971)

    Google Scholar 

  10. Phan, M. H., Franco, V., Bingham, N. S., Srikanth, H., Hur, N. H., Yu, S.C.: Tricritical point and critical exponents of La0.7 Ca0.3−x Sr x MnO3 (x = 0, 0.05, 0.1, 0.2, 0.25) single crystals. J. Alloys. Compd. 508, 238–244 (2010)

    Article  Google Scholar 

  11. Zghal, E., Koubaa, M., CheikhrouhouKoubaa, W., Cheikhrouhou, A., Sicard, L., Ammar-Merah, S.: Influence of magnetic field on the critical behavior of La0.7Ca0.2Ba0.1MnO3. J. Alloys. Comp. 627, 211–217 (2015)

    Article  Google Scholar 

  12. Suryanarayana, C.: ‘Mechanical alloying and milling’. Prog. Mater. Sci. 46(1), 184 (2001)

    Google Scholar 

  13. Blazquez, J. S., ipus, J. J., Moreno-Ramirez, L. M., Borrego, J. M., Lozano-Perez, S., FRANCO, V., CONDE, C. F., CONDE, A.: Analysis of the magnetocaloric effect in powder samples obtained by ball milling. Metall. Mater. Trans. E. 2, 136 (2015)

    Google Scholar 

  14. Riahi, K., Messaoui, I., Cheikhrouhou-Koubaa, W., Mercone, S., Leridon, B., Koubaa, M., Cheikhrouhou, A.: Effect of synthesis route on the structural, magnetic and magnetocaloric properties of La0.78Dy0.02Ca0.2MnO3 manganite: a comparison between sol-gel, high-energy ball-milling and solid state process. J. Alloys. Compd. 688, 1028–1038 (2016)

    Article  Google Scholar 

  15. Phan, M. H., Tian, S. B., Yu, S. C., Ulyanov, A. N.: Magnetic and magnetocaloric properties of La0.7Ca0.3−x Ba x MnO3 compounds. J. Magn. Magn. Mater. 256, 306–310 (2003)

    Article  ADS  Google Scholar 

  16. Hamad, M.A.: Prediction of thermomagnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3. Phase Trans 85, 106–112 (2012)

    Article  Google Scholar 

  17. Hamad, M.A.: Calculation on electrocaloric properties of ferroelectric SrBi2Ta2O9. Phase Trans 85, 159–168 (2012)

    Article  Google Scholar 

  18. Fisher, M.E: The theory of equilibrium critical phenomena. Rep. Prog. Phys. 30, 615 (1967)

    Article  ADS  Google Scholar 

  19. Stanley, H.E.: Scaling, universality, and renormalization: three pillars of modern critical phenomena. Rev. Mod. Phys. 71, 358 (1999)

    Article  Google Scholar 

  20. Kaul, S.N: Thermal modulation studies of the critical magnetic susceptibility of Gd. J. Magn. Magn. Mater. 53, 5 (1985)

    Article  ADS  Google Scholar 

  21. Pennington, W.T.: DIAMOND visual crystal structure information system. J. Appl. Cryst. 32, 1028–1029 (1999)

    Article  Google Scholar 

  22. Mira, J., Rivas, J., Hueso, L. E., Rivadulla, F., Lopez-Quintela, M.A.: Tuning of colossal magnetoresistance via grain size change in La0.67Ca0.33MnO3. J. Appl. Phys. 91, 8903 (2002)

    Article  ADS  Google Scholar 

  23. Arrot, A., Noakes, J.E.: Approximate equation of state for nickel near its critical temperature. Phys. Rev. Lett. 19, 786 (1967)

    Article  ADS  Google Scholar 

  24. Kouvel, J. S., Fisher, M.E.: Detailed magnetic behavior of nickel near its Curie point. Phys. Rev. 136, A1626 (1964)

    Article  ADS  Google Scholar 

  25. Widom, B.: Equation of state in the neighborhood of the critical point. J. Chem. Phys. 43, 3898 (1965)

    Article  ADS  Google Scholar 

  26. Mohamed, Za., Tka, E., Dhahri, J., Hlil, E.K: Short-range ferromagnetic order in La0.67Sr0.16Ca0.17MnO3 perovskite manganite. J. Alloys. Compd. 619, 520–526 (2015)

    Article  Google Scholar 

  27. Khlifi, M., Tozri, A., Bejar, M., Dhahri, E., Hlil, E.K.: Effect of calcium deficiency on the critical behavior near the paramagnetic to ferromagnetic phase transition temperature in La0.8 Ca0.2MnO3oxides. J. Magn. Magn. Mater. 324, 2142–2146 (2012)

    Article  ADS  Google Scholar 

  28. Kim, D., Revaz, B., Zink, B. L., Hellman, F., Rhyne, J. J., Mitchell, J. F.: Tricritical point and the doping dependence of the order of the ferromagnetic phase transition of La1−x Ca x MnO3. Phys. Rev. Lett. 89, 227202 (2002)

    Article  ADS  Google Scholar 

  29. Zhang, P., Lampen, P., Phan, T. L., Yu, S. C., Thanh, T. D., Dan, N. H., Lam, V. D., Srikanth, H., Phan, M. H.: Influence of magnetic field on critical behavior near a first order transition in optimally doped manganites: The case of La1−x Ca x MnO3 (0.2x0.4). J. Magn. Magn. Mater. 348, 146 (2013)

    Article  ADS  Google Scholar 

  30. Jiang, W., Zhou, X., Williams, G., Mukovskii, Y., Privenzentsev, R.: The evolution of Griffiths-phase-like features and colossal magnetoresistance in La(1−x)Ca(x)MnO3 (0.18 x 0.27) across the compositional metal-insulator boundary. J. Phys. Condens. Matter 21, 415603 (2009)

    Article  Google Scholar 

  31. Ferreira, P. M. G. L., Souza, J. A.: Scaling behavior of nearly first order magnetic phase transitions. J. Phys. Condens. Matter 23, 226003 (2011)

    Article  ADS  Google Scholar 

  32. Oleaga, A., Salazar, A., CiomagaHantean, M., Balakrishnan, G.: Three-dimensional Ising critical behavior in R0.6Sr0.4MnO3 (R = Pr, Nd) manganites. Phys. Rev. B 92, 024409 (2015)

    Article  ADS  Google Scholar 

  33. Ezaami, A., Sfifir, I., Cheikhrouhou-Koubaa, W., Koubaa, M., Cheikhrouhou, A.: Critical properties in La0 ⋅7Ca0 ⋅2Sr0 ⋅1MnO3 manganite: a comparison between sol-gel and solid state process. J. Alloys Comp 693, 658–666 (2016)

    Article  Google Scholar 

  34. Messaoui, I., Omrani, H., Mansouri, M., CheikhrouhouKoubaa, W., Koubaa, M., Cheikhrouhou, A., Hlil, E.K.: Magnetic, magnetocaloric and critical behavior investigation of Nd0.7 Ca0.15Sr0.15MnO3 prepared by high-energy ball milling. Ceram. Intern. 42, 17032–17044 (2016)

    Article  Google Scholar 

  35. Phan, M. H., Yu, S. C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2007)

    Article  ADS  Google Scholar 

  36. Hamad, M. A.: Theoretical work on magnetocaloric effect in La0.75Ca0.25MnO3. J .Adv. Ceram. 1(4), 290 (2012)

    Article  Google Scholar 

  37. Mbarek, H., M’nasri, R., Cheikhrouhou-Koubaa, W., Cheikhrouhou, A.: Magnetocaloric effect near room temperature in (1-y)La0.8 Ca0.05K0.15MnO3/yLa0.8K0.2MnO3 composites. Phys. Stat. Sol. A. 211, 975 (2014)

    Article  Google Scholar 

  38. Phan, T.L., Zhang, Y.D., Zhang, P., Thanh, T.D., Yu, S.C.: Critical behavior and magnetic-entropy change of orthorhombic La0.7Ca0.2Sr0.1MnO3. J. Appl. Phys. 112, 093906 (2012)

    Article  ADS  Google Scholar 

  39. Zhang, P., Lampen, P., Phan, T. L., Yu, S. C., Thanh, T. D., Dan, N. H., Lam, V. D., Srikanth, H., Phan, M.H.: Influence of magnetic field on critical behavior near a first order transition in optimally doped manganites: The case of La1−x Ca x MnO3 (0.2x0.4). J. Magn. Magn. Mater 348, 146 (2013)

    Article  ADS  Google Scholar 

  40. Taran, S., Chaudhuri, B.K., Chatterjee, S., Yang, H.D., Neeleshwar, S., Chen, Y.Y.: Critical exponents of the La0.7Sr0.3MnO3, La0.7Ca0.3MnO3, and Pr0.7Ca0.3MnO3 systems showing correlation between transport and magnetic properties. J. Appl. Phys. 98, 103903 (2005)

    Article  ADS  Google Scholar 

  41. Kim, D., Revaz, B., Zink, B.L., Hellman, F., Rhyne, J.J., Mitchell, J.F.: Tricritical point and the doping dependence of the order of the ferromagnetic phase transition of La1−x Ca x MnO3. Phys. Rev. Lett. 89, 227202 (2002)

    Article  ADS  Google Scholar 

  42. Smari, M., Walha, I., Omri, A., Rousseau, J. J., Dhahri, E., Hlil, E. K.: Critical parameters near the ferromagnetic–paramagnetic phase transition in La0.5Ca0.5−x Ag x MnO3 compounds (0.1x0.2). Ceram. Int. 40, 8945 (2014)

    Article  Google Scholar 

  43. Fan, J., Ling, L., Hong, B., Zhang, L., Pi, L., Zhang, Y.: Critical properties of the perovskite manganite La0.1Nd0.6Sr0.3MnO3. Phys. Rev. B 81, 144426 (2010)

    Article  ADS  Google Scholar 

  44. Motome, Y., Furulawa, N.: Critical temperature of ferromagnetic transition in three-dimensional double-exchange models. J. Phys. Soc. Jap. 69, 3785–3788 (2000)

    Article  ADS  Google Scholar 

  45. Omrani, H., Mansouri, M., CheikhrouhouKoubaa, W., Koubaa, M., Cheikhrouhou, A.: Critical behavior study near the paramagnetic to ferromagnetic phase transition temperature in Pr0.6−x Er x Ca0.1Sr0.3MnO3 (x = 0, 0.02 and 0.06) manganites. RSC Adv 6, 78017–78027 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Tunisian Ministry of Higher Education and Scientific Research. The magnetic measurements at ESPCI have been supported through grants from Region Ile-de-France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Riahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riahi, K., Messaoui, I., Cheikhrouhou-Koubaa, W. et al. Prediction of Magnetocaloric Effect by a Phenomenological Model and Critical Behavior for La0.78Dy0.02Ca0.2MnO3 Compound. J Supercond Nov Magn 30, 2081–2089 (2017). https://doi.org/10.1007/s10948-017-4009-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4009-5

Keywords

Navigation