Skip to main content
Log in

Structural and Magnetic Properties of Co1−x Mg x Fe2 O 4 Nanoparticles Synthesized by Microwave-Assisted Combustion Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Co1−x Mg x Fe2 O 4 nanoparticles with x values 0, 0.5, and 1 were synthesized using a microwave-assisted combustion method and subsequent heat treatment. The stoichiometric mixture of Co(NO3)2⋅ 6H2O, Fe(NO3)2⋅ 9H2O, Zn(NO3)2⋅ 6H2O, and urea was used as the fuel additive. The structural, morphological, and magnetic properties of synthesized nanoparticles were then investigated using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and vibrating sample magnetometer analysis techniques. The mean crystal size of the synthesized samples was about 32 nm based on Scherrer’s formula. The saturation magnetizations (M s) were also 59, 27, and 28 emu/g for samples with x values 0, 0.5, and 1, respectively. Results showed direct changes in coercivity and remanent magnetization parameters by increasing the Co content, which can be attributed to the anisotropic nature of cobalt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yin, Y., Alivisatos, A.P.: Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005)

    Article  ADS  Google Scholar 

  2. Jiles, D.C., Lo, C.C.H.: The role of new materials in the development of magnetic sensors and actuators. Sens. Actuators, A 106, 3–7 (2003)

    Article  Google Scholar 

  3. Khan, M.A., Islam, M., Iqbal, M.A., Ahmad, M., Din, M.F., Murtaza, G., Ahmad, I., Warsi, M.F.: Magnetic, ferromagnetic resonance and electrical transport study of Ni1−x,TbxFe2 O 4 spinel ferrites. Ceram. Int. 40, 3571–3577 (2014)

    Article  Google Scholar 

  4. Tsay, C.Y., Lin, Y.H., Jen, S.U.: Magnetic, magnetostrictive and AC impedance properties of manganese substituted cobalt ferrites. Ceram. Int. 41, 5531–5536 (2015)

    Article  Google Scholar 

  5. Anjum, S., Hameed, S., Bashir, F.: Microstructural, structural, magnetic and optical properties of antimony doped cobalt spinel ferrites. Mater. Today 2, 5329–5336 (2015)

    Article  Google Scholar 

  6. Šepelák, V., Baabe, D., Mienert, D., Schultze, D., Krumeich, F., Litterst, F.J., Becker, K.D.: Evolution of structure and magnetic properties with annealing temperature in nanoscale high-energy-milled nickel ferrite. J. Magn. Magn. Mater. 257, 377–386 (2003)

    Article  ADS  Google Scholar 

  7. Mc Currie, R.A.: Ferromagnetic materials: Structure and Properties. Academic, London (1994)

    Google Scholar 

  8. Pillai, V., Shah, D.O.: Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163, 243–248 (1996)

    Article  ADS  Google Scholar 

  9. Maaz, K., Mumatz, A., Hasanain, S.K., Ceylan, A.: Synthesis and magnetic properties of cobalt ferrite (CoFe2 O 4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308, 289–295 (2007)

    Article  ADS  Google Scholar 

  10. Colombo, M., Carregal-Romero, S., Casula, M.F., Gutiérrez, L., Morales, M.P., Bohm, I.B., Heverhagen, J.T., Prosperi, D., Parak, W.J.: Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41, 4306–4334 (2012)

    Article  Google Scholar 

  11. Torres, T.E., Roca, A.G., Morales, M.P., Ibarra, A., Marquina, C., Ibarra, M.R., Goya, G.F.: Magnetic properties and energy absorption of CoFe2 O 4 nanoparticles for magnetic hyperthermia. J. Phys. Conf. Ser. 200, 072101 (2010)

    Article  Google Scholar 

  12. Wang, Y.C., Ding, J., Yi, J.B., Liu, B.H., Yu, T., Shen, Z.X.: High-coercivity Co-ferrite thin films on (100)-SiO2 substrate. Appl. Phys. Lett. 84, 2596–2598 (2004)

    Article  ADS  Google Scholar 

  13. Qu, Y., Yang, H., Yang, N., Fan, Y., Zhu, H., Zou, G.: The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated cofe2 O 4 nanoparticles. Mater. Lett. 60, 3548 (2006)

    Article  Google Scholar 

  14. Joshi, H.M., Lin, Y.P., Aslam, M., Prasad, P.V., Sikma, E.A.Sc., Edelman, R., Meade, T., Dravid, V.P.: Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. J. Phys. Chem. C: Nanomater Interfaces 113(41), 17761–17767 (2009)

    Article  Google Scholar 

  15. Wang, Y.C., Ding, J., Yi, J.B., Liu, B.H., Yu, T., Shen, Z.X.: High-coercivity Co-ferrite thin films on (100)-SiO2 substrate. Appl. Phys. Lett. 84, 2596–2598 (2004)

    Article  ADS  Google Scholar 

  16. Kriesman, C.J., Harrison, S.E.: Cation distributions in ferrospinels magnesium-manganese ferrites. Phys. Rev. 103, 857 (1956)

    Article  ADS  Google Scholar 

  17. Verma, S., Joy, P.A., Khollam, Y.B., Potdar, H.S., Deshpande, S.B.: Synthesis of nanosized MgFe2 O 4 by microwave hydrothermal method. Mater.Lett. 58, 1092–1095 (2004)

    Article  Google Scholar 

  18. Sasaki, T., Ohara, S., Naka, T., Sechovsky, J., Umetsu, M., Takami, S., Jeyadevan, B., Adschiri, T.: Continuous synthesis of fine MgFe2 O 4 nanoparticles by supercritical hydrothermal reaction. J. Supercrit. Fluids. 53, 92–94 (2010)

    Article  Google Scholar 

  19. Song, Q., Zhang, Z.J.: Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J. Am. Chem. Soc. 126, 6164–6168 (2004)

    Article  Google Scholar 

  20. Khot, V.M., Salunkhe, A.B., Thorat, N.D., Ningthoujamb, R.S., Pawar, S.H.: Induction heating studies of dextran coated MgFe2 O 4 nanoparticles for magnetic hyperthermia. Dalton Trans. 42, 1249–1258 (2013)

    Article  Google Scholar 

  21. Rezlescu, N., Rezlescu, E., Doroftei, C., Popa, P.D.: Study of some Mg-based ferrites as humidity sensors. J. Phys.: Conf. Ser. 15, 296–299 (2005)

    Google Scholar 

  22. Jia, C.J., Liu, Y., Schwickardi, M., Weidenthaler, C., Spliethoff, B., Schmidt, W., Schüth, F.: Small gold particles supported on MgFe2 O 4 nanocrystals as novel catalyst for CO oxidation. Appl. Catal. A. 386, 94–100 (2010)

    Article  Google Scholar 

  23. Gong, C., Bai, Y., Qi, Y., Lun, N., Feng, J.: Preparation of carbon-coated MgFe2 O 4 with excellent cycling and rate performance. Electrochim. Acta 90, 119–127 (2013)

    Article  Google Scholar 

  24. Sivakumar, N., Gnanakan, S.R.P., Karthikeyan, K., Amaresh, S., Yoon, W.S., Park, G.J., Lee, Y.S.: Nanostructured MgFe2 O 4 as anode materials for lithium-ion batteries. J. Alloys. Compd. 509, 7038–7041 (2011)

    Article  Google Scholar 

  25. Pradeep, A., Priyadharsini, P., Chandrasekaran, G.: Sol-gel route of synthesis of nanoparticles of MgFe2 O 4 and XRD, FTIR and VSM study. J. Magn. Magn. Mater. 320, 2774–2779 (2008)

    Article  ADS  Google Scholar 

  26. Farghali, A.A., Moussa, M., Khedr, M.H.: Synthesis and characterization of novel conductive and magnetic nano-composites. J. Alloys. Compd. 499, 98–103 (2010)

    Article  Google Scholar 

  27. Kasapoĝlu, N., Baykal, A., Köseoĝlu, Y., Toprak, M.S.: Microwave-assisted combustion synthesis of CoFe2 O 4 with urea, and its magnetic characterization. Scr. Mater. 57, 441–444 (2007)

    Article  Google Scholar 

  28. Maensiri, S., Sangmanee, M., Wiengmoon, A.: Magnesium ferrite (MgFe2 O 4) nanostructures fabricated by electrospinning. Nanoscale. Res. Lett. 4, 221–228 (2009)

    Article  ADS  Google Scholar 

  29. Šepelák, V., Menzel, M., Becker, K.D., Krumeich, F.: Mechanochemical reduction of magnesium ferrite. J. Phys. Chem. B 106, 6672–6678 (2002)

    Article  Google Scholar 

  30. Hamedoun, M., Benyoussef, A., Bousmina, M.: Magnetic properties of magnetic Co1−xMgxFe2 O 4 spinel by HTSE method. Physica B 406, 1633–1638 (2011)

    Article  ADS  Google Scholar 

  31. Franco, A. Jr., e Silva, F.C., Zapf, V.S.: High temperature magnetic properties of Co1−xMgxFe2 O 4 nanoparticles prepared by forced hydrolysis method. J. Appl. Phys. 111, 07B530-07B530-3 (2012)

    Article  Google Scholar 

  32. Wang, L., Lu, M., Liu, Y., Li, J., Liu, M., Li, H.: The structure, magnetic properties and cation distribution of Co1−xMgx Fe2 O 4/SiO2 nanocomposites synthesized by sol–gel method. Ceram. Int. 41, 4176–4181 (2015)

  33. Cullity, B.D.: Elements of X-ray diffraction. Addison-Wesley Reading, MA (1978)

  34. Köseoĝlu, Y., Baykal, A., Gözüak, F., Kavas, H.: Structural and magnetic properties of Co1−xZnxFe2 O 4 nanocrystals synthesized by microwave method. Polyhedron 28, 2887–2892 (2009)

    Article  Google Scholar 

  35. Sharma, D.R., Mathur, R., Vadera, S.R., Kumar, N., Kutty, T.R.N.: Synthesis of nano-composites of Ni–Zn ferrite in aniline formaldehyde copolymer and studies on their pyrolysis products. J. Alloy. Compd. 358, 193–204 (2003)

    Article  Google Scholar 

  36. Khandekar, M.S., Kambale, R.C., Patil, J.Y., Kolekar, Y.D., Suryavanshi, S.S.: Effect of calcination temperature on the structural and electrical properties of cobalt ferrite synthesized by combustion method. J. Alloy. Compd. 509, 1861–1865 (2011)

    Article  Google Scholar 

  37. Baykal, A., Köseoglu, N., Kasapoglu, Y., Gözüak, A.C., Basaran, F., Kavas, H., Toprak, M.S.: Microwave-induced combustion synthesis and characterization of Nix,Co1−xFe2 O 4 nanocrystals (x = 0.0, 0.4, 0.6, 0.8, 1.0). Cent. Eur. J. Chem. 6(1), 125–130 (2008)

    Google Scholar 

  38. Cullity, B.D.: Introduction to magnetic materials. Addison-Wesley Reading (1972)

  39. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  40. Ahmed, M.A., EL-Khawlani, A.A.: Enhancement of the crystal size and magnetic properties of Mg-substituted Co ferrite. J. Magn. Magn. Mater. 321, 1959–1963 (2009)

    Article  ADS  Google Scholar 

  41. Nakagomi, F., da Silva, S.W., Garg, V.K., Oliveira, A.C., Morais, P.C., Franco Júnior, A., Lima, E.C.D.: The influence of cobalt population on the structural properties of CoxFe3−x O 4. J. Appl. Phys. 101, 09M514-09M514-3 (2007)

    Article  Google Scholar 

  42. Franco Júnior, A., Zapf, V., Egan, P.: Magnetic properties of nanoparticles of CoxFe3−x O 4 (0.05 x 1.6) prepared by combustion reaction. J. Appl. Phys. 101, 09M506-09M506-3 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Masoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepahvandi, R., Masoudi, H., Khosravi, E. et al. Structural and Magnetic Properties of Co1−x Mg x Fe2 O 4 Nanoparticles Synthesized by Microwave-Assisted Combustion Method. J Supercond Nov Magn 30, 1801–1805 (2017). https://doi.org/10.1007/s10948-017-3974-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-3974-z

Keywords

Navigation