Skip to main content
Log in

Boundary Current Response in Ba 0 . 3 4 K 0 . 6 4 Fe2As2 Single Crystal Probed by Non-resonant Microwave Absorption

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Non-resonant microwave absorption (NRMA) in superconducting materials has become a new experimental technique to probe and understand superconducting materials. For example, cuprate superconductors are well studied with this technique. At the same time, the technique is also evolving. This NRMA technique has been used to study magnetic shielding effects/boundary current in Ba0.34 K 0.64Fe2As2 (BaK122) single crystals of iron pnictide superconducting sample measured at 9.4 GHz below T c (4.2–32 K). It has been observed that a small modulation field used in NRMA experiment yields the boundary current response. We have established that the boundary current response depends on both the modulation amplitude and the temperature. At high modulation field amplitudes and temperatures close to T c, the boundary current response gets suppressed and the flux-modulated response dominates. At low temperatures far away from T c, only the boundary current response dominates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bhat, S.V., Ganguly, P., Ramakrishnan, T.V., Rao, C.N.R.: J. Phys. C 20, L559 (1987)

    Article  ADS  Google Scholar 

  2. Blazey, K.W., Muller, K.A., Bednorz, J.G., Berlinger, W., Amoretti, G., Buluggiu, E., Vera, A., Matacotta, F.C.: Phys. Rev. B 36, 7241 (1987)

    Article  ADS  Google Scholar 

  3. Kachaturyan, K., Weber, E.R., Tejedor, P., Stacy, A.M., Portis, A.M.: Phys. Rev. B 36, 8309 (1987)

    Article  ADS  Google Scholar 

  4. Rettori, C., Davidov, D., Blelaish, I., Feluer, I.: Phys. Rev. B 36, 4028 (1987)

    Article  ADS  Google Scholar 

  5. Durny, R., Hautala, J., Ducharme, S., Lee, B., Symko, O.G., Taylor, P.C., Zhang, D.J., Xu, J.A.: Phys. Rev. B 36, 2361 (1987)

    Article  ADS  Google Scholar 

  6. Stankowski, J., Kahol, P.K., Dalal, N.S., Moodera, J.S.: Phys. Rev. B 36, 7126 (1987)

    Article  ADS  Google Scholar 

  7. Srinivasu, V.V., Thomas, B., Hegde, M.S., Bhat, S.V.: J. Appl. Phys. 75, 4131 (1994)

    Article  ADS  Google Scholar 

  8. Bhat, S.V., Srinivasu, V.V., Kumar, N.: Phys. Rev. B 44, 10121 (1991)

    Article  ADS  Google Scholar 

  9. Srinivasu, V.V., Pinto, R., Sasstry, M.D.: Appl. Supercond. 4, 195–201 (1996)

    Article  Google Scholar 

  10. Braunisch, W., Knauf, N., Kataev, V., Neuhausen, S., Grutz, A., Kock, A., Roden, B., Khomskii, D., Wohlleben, D.: Phys. Rev. Lett. 68, 1908 (1992)

    Article  ADS  Google Scholar 

  11. Khairullin, I. I., Khabibullaev, P. K., Yu, V., Sokolov, A. A., Zakhidov, T.R.: J. Phys. 23, 1107–1126 (1999)

    Google Scholar 

  12. Shaltiel, D., Krug von Nidda, H.A.: Nanosci. Nanotechnol. Lett. 3(4), 575–578 (2011)

    Article  Google Scholar 

  13. Rastogi, A., Srinivasu, V.V., Hegde, M.S., Bhat, S.V.: Phys. C. 234(3–4), 229–231 (1994)

    Article  ADS  Google Scholar 

  14. Puri, M., Masiakowski, J., Bear, J., Kevan, L.: J. Chem. Soc. Faraday Trans. 87(22), 3687–3694 (1991)

    Article  Google Scholar 

  15. Czyzak, B., Stankowski, J.: Acta Phys. Polon. A 99, 80 (1991)

    Google Scholar 

  16. Dulcic, A., Rakvin, B., Pozek, M.: Europhysics. Lett. 10(6), 593–598 (1989)

    Article  ADS  Google Scholar 

  17. Mahel, M., Darula, M., Benacka, S.: Supercon. Sci. Technol. 6, 112–118 (1993)

    Article  ADS  Google Scholar 

  18. Luo, H., Wang, Z., Yang, H., Cheng, P., Zhu, X., Wen, H.: Supercond. Sci. Technol. 21, 125014 (2008)

    Article  ADS  Google Scholar 

  19. Wang, C., Gao, Z., Yao, C., Wang, L., Qi, Y., Wang, D., Zhang, X., Ma, Y.: Supercond. Sci. Technol. 24, 065002 (2011)

    Article  ADS  Google Scholar 

  20. Chen, G.F., Li, Z., Dong, J., Li, G., Hu, W.Z., Zhang, X.D., Song, X.H., Zheng, P., Wang, N.L., Luo, J.L.: Phys. Rev. B 78, 224512 (2008)

    Article  ADS  Google Scholar 

  21. Portis, A.M., Blazey, K.W., Muller, K.A., Bednorz, J.G.: Euro. Phys. Lett. 5, 467 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

A partial support for this work from the Unisa Superconductivity Technology Research Chair is acknowledged. T.C. Ramashitja acknowledges an NRF bursary.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. C. Ramashitja or V. V. Srinivasu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramashitja, T.C., Srinivasu, V.V., Sankaran, V. et al. Boundary Current Response in Ba 0 . 3 4 K 0 . 6 4 Fe2As2 Single Crystal Probed by Non-resonant Microwave Absorption. J Supercond Nov Magn 30, 3581–3585 (2017). https://doi.org/10.1007/s10948-016-3850-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3850-2

Keywords

Navigation