Skip to main content
Log in

The Interplay of Long Range Interactions and Electron Density Distributions in Polar and Strongly Correlated Materials

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In the present contribution, we summarize the recent theoretical results on the physics of the electron-TO-phonon (el-TO-ph) interaction in polar materials. Within the frameworks of dipole approximation, we linked the interaction of electrons with the long-wavelength transverse optical vibrations to the long-range dipole-dipole interaction. We suggested a macroscopic parameterization of the el-TO-ph coupling constants in terms of experimental material parameters relating to phonon and electron characteristics of the system. The parametrization enabled us to introduce a novel relation that may measure a degree of polarity, and may indicate how close the dielectric behavior of the system is to a structural instability. The ferroelectric tendencies of known crystalline compounds were reproduced. Further considerations were focused on an integrated analysis of charge, electronic, and vibrational properties of iron-based narrow-gap systems FeSi and FeAs2. Similarly to ferroelectrics, these materials demonstrate a strong interplay of electronic and polarization degrees of freedom, which is mediated by the dynamic hybridization of the relevant frontier orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kristoffel, N.N.: Vibronic interaction and ferroelectricity. Czech. J. Phys. B 34, 1253–1263 (1984)

    Article  ADS  Google Scholar 

  2. Kristoffel, N., Konsin, P.: Vibronic theory of structural phase-transitions and displacive ferroelectrics. Phys. Status Solidi B 149, 11–40 (1988)

    Article  ADS  Google Scholar 

  3. Konsin, P., Kristoffel, N.: Electron-phonon theory of ferroelectricity and the isotope effect in perovskite oxides. Ferroelectrics 226, 95–106 (1999)

    Article  Google Scholar 

  4. Vinetskii, V.L., Itskovskii, M.A., Kukushkin, L.S.: Interaction of conduction electrons with transverse optical vibrations in ionic crystals. Fiz. Tverd. Tela 13, 76–86 (1971)

    Google Scholar 

  5. Pishtshev, A.: ElectronTO-phonon interaction in polar crystals. Physica B 406, 1586–1591 (2011)

    Article  ADS  Google Scholar 

  6. Born, M., Huang, K.: Dynamical Theory of Crystal Lattices, Oxford Univ. Press, Oxford (1954)

    MATH  Google Scholar 

  7. Zhong, W., King-Smith, R.D., Vanderbilt, D.: Giant LO-TO splittings in perovskite ferroelectrics. Phys. Rev. Lett. 72, 3618–3621 (1994)

    Article  ADS  Google Scholar 

  8. Pishtshev, A.: Evaluation of the electron-TO-phonon interaction in polar crystals from experimental data. Physica B 405, 4128–4132 (2010)

    Article  ADS  Google Scholar 

  9. Keating, P.N.: Dielectric screening and the phonon spectra of metallic and nonmetallic crystals. Phys. Rev. 175, 1171–1180 (1968)

    Article  ADS  Google Scholar 

  10. Sham, L.J.: Electronic contribution to lattice dynamics in insulating crystals. Phys. Rev. 188, 1431–1439 (1969)

    Article  ADS  Google Scholar 

  11. Pick, R.M., Cohen, M.H., Martin, R.M.: Microscopic theory of force constants in the adiabatic approximation. Phys. Rev. B 1, 910–920 (1970)

    Article  ADS  Google Scholar 

  12. Kvyatkovskii, O.E.: On local-field effects in semiconductors and dielectrics. Fiz. Tverd. Tela 27, 2673–2682 (1985)

    Google Scholar 

  13. Kvyatkovskii, O.E.: On local-field effects in semiconductors and dielectrics. Engl. transl.: Sov. Phys. Solid State 27, 1603 (1985)

    Google Scholar 

  14. Kvyatkovskii, O.E.: Dipolar tensor structure and effect of dipole-dipole interaction on the dielectric properties and long wavelength optical lattice vibrations in insulator and semiconductor crystals. Fiz. Tverd. Tela 35, 2154–2169 (1993)

    Google Scholar 

  15. Kvyatkovskii, O.E.: Dipolar tensor structure and effect of dipole-dipole interaction on the dielectric properties and long wavelength optical lattice vibrations in insulator and semiconductor crystals. Engl. transl.: Phys. Solid State 35, 1071 (1993)

    ADS  Google Scholar 

  16. Kvyatkovskii, O.E.: Polarization mechanism of ferroelectric lattice instability in crystals. Fiz. Tverd. Tela 39, 687–693 (1997)

    Google Scholar 

  17. Kvyatkovskii, O.E.: Polarization mechanism of ferroelectric lattice instability in crystals. Engl. transl.: Phys. Solid State 39, 602–608 (1997)

    ADS  Google Scholar 

  18. Iishi, K.: Lattice-dynamical study of the α- β quartz phase transition. Am. Mineral. 63, 1190–1197 (1978)

    Google Scholar 

  19. Bianconi, A.: Multiband superconductivity in high T c cuprates and diborides. J. Phys. Chem. Solids 67, 567–570 (2006)

    Article  ADS  Google Scholar 

  20. Innocenti, D., Valetta, A., Bianconi, A.: Shape resonance at a Lifshitz transition for high temperature superconductivity in multiband superconductors. J. Supercond. and Novel Magn. 24, 1137–1143 (2011)

    Article  Google Scholar 

  21. Kristoffel, N., Rubin, P., Örd, T.: Multiband model of cuprate superconductivity. Int. J. Mod. Phys. B 22, 5299–5327 (2008)

    Article  ADS  MATH  Google Scholar 

  22. Kristoffel, N., Rubin, P.: Supercarrier density isotope effect manifestation in a multiband superconductor. Phys. Lett. A 360, 367–370 (2006)

    Article  ADS  Google Scholar 

  23. Kristoffel, N., Rubin, P.: Simulataneous action of intra- and interband pair channels in multiband superconductivity. J. Supercond. Nov. Magn. 29, 611–614 (2016)

    Article  MATH  Google Scholar 

  24. Pishtshev, A.: Contribution of long-wavelength transverse optical phonons to electron-phonon coupling in doped polar insulators. Physica B 406, 2999–3002 (2011)

    Article  ADS  Google Scholar 

  25. Pishtshev, A., Rubin, P.: FeAs2 formation and electronic nematic ordering: Analysis in terms of structural transformations. Phys. Rev. B 93, 064113 (2016)

  26. Bader, R.: Atoms in Molecules: A Quantum Theory Oxford University Press (1994)

  27. Kjekshus, A., Rakke, T., Andresen, A.F.: Compounds with the marcasite type crystal structure. IX. Structural data for FeAs2, FeSe2, NiAs2, NiSb2, and CuSe2. Acta. Chem. Scand. A 28, 996–1000 (1974)

  28. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    Article  Google Scholar 

  29. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  Google Scholar 

  30. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  ADS  Google Scholar 

  31. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  32. Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humpereys, C.J., Sutton, A.P.: Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998)

    Article  ADS  Google Scholar 

  33. Togo, A., Tanaka, I.: First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015)

    Article  Google Scholar 

  34. Kresse, G., Furthmüller, J., Hafner, J.: Ab initio Force Constant Approach to Phonon dispersion relations of diamond and graphite. Europhys. Lett. 32, 729–734 (1995)

    Article  ADS  Google Scholar 

  35. Parlinski, K., Li, Z.Q., Kawazoe, Y.: First-Principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 78, 4063–4066 (1997)

  36. Sanville, E., Kenny, S.D., Smith, R., Henkelman, G.: Improved grid-based algorithm for Bader charge allocation. J. Comp. Chem. 28, 899–908 (2007)

    Article  Google Scholar 

  37. Tang, W., Sanville, E., Henkelman, G.: A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 21(7pp), 084204 (2009)

    ADS  Google Scholar 

  38. Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Kristoffel.

Appendix

Appendix

Computational details on electron structure calculations of the bulk FeAs2 the crystalline FeAs2 has the marcasite type crystal structure (P n n m) with the lattice parameters [27] a = 5.3013 Å, b = 5.9858 Å, and c = 2.8822 Å. The DFT calculations were performed with the use of the VASP code within PAW-GGA functional scheme [2830]. A plane-wave basis set with 500 eV cutoff, and a Γ point centered mesh for the k-point sampling were chosen. The Kohn-Sham eigenstates were determined by using the Perdew-Burke-Ernzerhof GGA exchange-correlation functional [31]. Electron correlations were considered within approach of Dudarev et al. [32]. The effective value of the on-site dd Coulomb repulsion U e f f = 1.6 eV was taken from [25]. The phonon properties were calculated within the harmonic approximation using PHONOPY package [33]; the elements of dynamical matrix were determined by employing finite displacement method [34, 35]. The forces were evaluated for 2×2×4 supercell and 3×3×2k-points set. A Bader analysis of the valence electron distributions, which implements the AIM (“atoms in molecules”) approach [26], was performed by using the method of ref. [36, 37]. For visualization of the actual phonon modes the VESTA program [38] was applied.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kristoffel, N., Pishtshev, A., Rubin, P. et al. The Interplay of Long Range Interactions and Electron Density Distributions in Polar and Strongly Correlated Materials. J Supercond Nov Magn 30, 91–96 (2017). https://doi.org/10.1007/s10948-016-3765-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3765-y

Keywords

Navigation