Skip to main content
Log in

Hard Magnetic Nanocomposites Based on Ferrimagnetic Oxides

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Hard magnetic SrFe10.5Al1.5O19 hexaferrite and soft magnetic Fe3O4 ferrite with cubic spinel structure were synthesized by Pechini method and subsequently mixed and sinterized to obtain an isotropic, polycrystalline SrFe10.5Al1.5O19/Fe3O4 nanocomposite. A noticeable coercivity of 648 kA/m was observed, together with a saturation magnetization of 0.2 T. The magnetization reversal process for the nanocomposite was described in terms of recoil area and Henkel plots. Field intensity range between 0 and 600 kA/m was identified as a favoring magnetizing interaction, whereas at higher fields, dipolar interactions destabilize magnetized states favoring magnetization reversal. The field interval for which the intergranular exchange interaction facilitates reversible coherent rotation between constituent grains was determined within 0–220 kA/m. Above 220 kA/m, a progressive deterioration of the exchange coupling gives way to the demagnetizing process towards full magnetization reversal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kneller, E.F., Hawig, R.: The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans. Magn. 27, 3588–3600 (1991)

    Article  ADS  Google Scholar 

  2. Coehoorn, R., de Mooij, D.B., de Waard, C.: Melt spun permanent magnet materials containing Fe3B as the main phase. J. Mag. Mag. Mater. 8, 101–106 (1989)

    Article  ADS  Google Scholar 

  3. Stoner, E.C., Wohlfarth E.P: A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. Roy. Soc. A: Phys. Mathem. Eng. Sci. 240(948), 599–642

  4. Liu, J.P. Liu, J.P., Fullerton, E., Gutfleisch, O., Sellmyer, D. (eds.): Exchange-coupled nanocomposite permanent magnets. Springer, New York (2009)

  5. Rivoirard, S., Givord, D.: Hard magnetic nanostructures in advanced magnetic nanostructures. In: Sellmyer, D., Skomski, R. (eds.) , pp 325–335. Springer, New York (2006)

  6. Coey, J.M.D.: Hard magnetic materials: a perspective. IEEE Trans. Magn. 47, 4671–4682 (2011)

    Article  ADS  Google Scholar 

  7. Balamuruguan, B., Sellmyer, D., Hadjipanayis, G.C., Skomski, R.: Prospects for nanoparticle-based permanent magnets. Scripta Mater. 67, 542–547 (2012)

    Article  Google Scholar 

  8. Zhang, L., Li, Z.: Synthesis and characterization of SrFe12O19/CoFe2O4 nanocomposites with core-shell structure. J. Alloys Comp. 469, 422–426 (2009)

    Article  Google Scholar 

  9. Roy, D., Shivakumara, C., Anil Kumar, P.S.: Observation of the exchange spring behavior in hard-soft-ferrite nanocomposite. J. Magn. Magn. Mater. 321, L11–L14 (2009)

    Article  ADS  Google Scholar 

  10. Pechini, M.P.: July 11 1967 U.S. Patent No. 3330697.

  11. Galceran, M., Pujol, M.C., Aguilo, M., Diaz, F.: Sol-gel modified Pechini method for obtaining nanocrystalline KRE(WO4)2 (RE = Gd and Yb). J.Sol-Gel Sci. Technol. 42, 79–88 (2007)

    Article  Google Scholar 

  12. Mariappan, C.R., Galven, C., Crosnier-Lopez, M.P., Le Berre, F., Bohnke, O.: Synthesis of nanostructured LiTi2(PO4)3 powder by a Pechini-type polymerizable complex method. J. Sol. State Chem 179, 450–456 (2006)

    Article  ADS  Google Scholar 

  13. Barrera, V., Betancourt, I.: Hard magnetic properties of nanosized Sr(Fe,Al)12O19 hexaferrites obtained by Pechini method. J. Phys. Chem. Sol. 93, 1–6 (2016)

    Article  ADS  Google Scholar 

  14. Liu, X.-M., Gao, W.-L.: Preparation and magnetic properties of NiFe2O4 nanoparticles by modified Pechini method. Mater. Manufac. Proc. 27, 905–909 (2012)

    Article  Google Scholar 

  15. Nga, T.T.V., Duong, N.P., Hien, T.D.: Composition and magnetic studies of ultrafine Al-substituted Sr hexaferrite particles prepared by citrate sol-gel method. J. Magn. Magn. Mater. 324, 1141–1146 (2012)

    Article  ADS  Google Scholar 

  16. Kazin, P.E., Trusov, L.A., Zitsev, D.D., Tretyakov, Y.D., Jansen, M.: Formation and submicron-sized SrFe12−xAlxO19 with very high coercivity. J. Magn. Magn. Mater 320, 1068–1072 (2008)

    Article  ADS  Google Scholar 

  17. Kronmuller, J., Fahnle, M.: Micromagnetism and the microstructure of ferromagnetic solids. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  18. Ataie, A., Harris, I.R., Ponton, C.B.: Magnetic properties of hydrothermally synthesized strontium hexaferrite as a function of synthesis conditions. J. Mater. Sci. 30, 1429–1433 (1995)

    Article  ADS  Google Scholar 

  19. Topfer, J., Schwarzer, S., Senz, S., Hesse, D.: J. Eur. Ceram. Soc. 25, 1681–1688 (2005)

    Article  Google Scholar 

  20. Zi, Z.F., Sun, Y.P., Zhu, X.B., Yang, Z.R., Daí, J.M., Song, W.H.: Influence of SiO2 and CaO additions on the microstructure and magnetic properties of sintered Sr-hexaferrite. J. Magn. Magn. Mater. 320, 2746–2751 (2008)

    Article  ADS  Google Scholar 

  21. Betancourt, I., Davies, H.A.: Exchange coupled nanocomposite hard magnetic alloys. Mater. Sci. Tech. 26, 5–19 (2010)

    Article  Google Scholar 

  22. Hadjipanayis, G.C.: Nanophase hard magnets. J. Magn. Magn. Mater. 200, 373–391 (1999)

    Article  ADS  Google Scholar 

  23. Wohlfarth, E.P.: Relations between different modes of acquisition of the remanent magnetization of ferromagnetic particles. J. Appl. Phys. 29, 595 (1958)

    Article  ADS  Google Scholar 

  24. Kelly, P.E., OGrady, K., Mayo, P.I., Chantrell, R.W.: Switching mechanism in cobalt-phosphorous thin films. IEEE Trans. Magn. 25, 3881–3883 (1989)

    Article  ADS  Google Scholar 

  25. Zhang, H.W., Rong, C.-B., Du, X.-B., Zhang, J., Zhang, S.-Y., Shen, B.-G.: Investigation of intergrain exchange coupling of nanocrystalline permanent magnets by Henkel plot. Appl. Phys. Lett. 82, 4088–4100 (2003)

    ADS  Google Scholar 

  26. Speliotis, D.E., Lynch, W.: Magnetic interactions in particulate and thin-film recording media. J. Appl. Phys. 69, 4496–4498 (1991)

    Article  ADS  Google Scholar 

  27. Richards, D., Harrell, J.W., Parker, M.R.: Remanence studies of interparticle interactions in Ba-ferrite. J. Magn. Magn. Mater. 120, 164–166 (1993)

    Article  ADS  Google Scholar 

  28. Chen, Q., Ma, B.M., Lu, B., Huang, M.Q., Laughlin, D.E.: A study on the exchange coupling of NdFeB-type nanocomposites using Henkel plots. J. Appl. Phys. 85, 5917–5919 (1999)

    Article  ADS  Google Scholar 

  29. Harland, C.L., Lewis, L.H., Chen, Z., Ma, B.-M.: Exchange coupling and recoil loop area in Nd2Fe14B nanocrystalline alloys. J. Magn. Magn. Mater. 271, 53–62 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I. Betancourt acknowledges financial support from research project UNAM-PAPIIT IN104313. V. Barrera is grateful for the scholarship received from UNAM-PAPIIT IN104313. Special thanks are given for Adriana Tejeda, Carlos Flores, and Damaris Cabrero (IIM-UNAM) for their valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Betancourt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betancourt, I., Barrera, V. & Elizalde-Galindo, J.T. Hard Magnetic Nanocomposites Based on Ferrimagnetic Oxides. J Supercond Nov Magn 29, 2407–2411 (2016). https://doi.org/10.1007/s10948-016-3564-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3564-5

Keywords

Navigation