Skip to main content
Log in

The Electronic and Magnetic Properties and the Topological Phase Graphene Sheet with Fe, Co, Si, and Ge Impurities

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The structural, electronic, and magnetic properties of pure graphene sheet and graphene sheet with Fe, Co, Si, and Ge impurities are investigated. The calculated results are done within density functional theory in the presence of spin-orbit coupling using the generalized gradient approximation. Electron density of states, band order, electron charge distribution, magnetic moment of these sheets, and the effect of pressure on the band order of graphene sheet with Fe impurity are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  2. Klabunde, K.J., Richards, R.M.: Nanoscale Materials in Chemistry, 2nd edn. Wiley, Hoboken (2009)

    Book  Google Scholar 

  3. Gong, J.R.: Graphene-Synthesis, Characterization, Properties and Applications. InTechInc, Rijeka (2011)

    Book  Google Scholar 

  4. Falkovsky, L.A., Pershoguba, S.S.: Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 76, 153410 (2007)

    Article  ADS  Google Scholar 

  5. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Blooth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  ADS  Google Scholar 

  6. Maassen, J., Ji, W., Guo, H.: Graphene spintronics: the role of ferromagnetic electrodes. Nano Lett. 11, 151–155 (2011)

    Article  ADS  Google Scholar 

  7. Candini, A., Klyatskaya, S., Ruben, M., Wernsdorfer, W., Affronte, M.: Graphene spintronic devices with molecular nanomagnets. Nano Lett. 11, 2634–2639 (2011)

    Article  Google Scholar 

  8. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  9. Makarova, T., Palacio, F.: Carbon Based Magnetism (an Overview of the Magnetism of Metal Free Carbon-based Compounds and Materials). Elsevier, Amsterdam (2006)

    Google Scholar 

  10. Amara, H., Latil, S., Meunier, V., Lambin, P., Charlier, J.C.: Scanning tunneling microscopy fingerprints of point defects in graphene: a theoretical prediction. Phys. Rev. B 76, 115423 (2007)

    Article  ADS  Google Scholar 

  11. Lehtinen, P.O., Foster, A.S., Ayuela, A., Krasheninnikov, A., Nordlund, K., Nieminen, R.M.: Magnetic properties diffusion of adatoms on a graphene sheet. Phys. Rev. Lett. 91, 017202 (2003)

    Article  ADS  Google Scholar 

  12. Palacios, J.J., Fernández-Rossier, J., Brey, L.: Vacancy-induced magnetism in graphene and graphene ribbons. Phys. Rev. B 77, 195428 (2008)

    Article  ADS  Google Scholar 

  13. Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., Pyykkö, P., Nieminen, R.M.: Embedding transition-metal atoms in graphene: structure, bonding and magnetism. Phys. Rev. Lett. 102, 126807 (2009)

    Article  ADS  Google Scholar 

  14. Gan, Y., Sun, L., Banhart, F.: One- and two-dimensional diffusion of metal atoms in graphene. Small 4, 587–591 (2008)

    Article  Google Scholar 

  15. Shiraishi, M., Ohishi, M., Nouchi, R., Mitoma, N., Nozaki, T., Shinjo, T., Suzuki, Y.: Robustness of spin polarization in graphene-based spin valves. Adv. Mater. 19, 3711–3716 (2009)

    Google Scholar 

  16. Pesin, D., MacDonald, A.H.: Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 11, 409–416 (2012)

    Article  ADS  Google Scholar 

  17. Cho, Y., Choi, Y.C., Kim, K.S.: Graphene spin-valve device grown epitaxially on the Ni(111) substrate: a first principles study. J. Phys. Chem. C 115, 6019–6023 (2011)

    Article  Google Scholar 

  18. Zhou, J., Wang, L., Qin, R., Zheng, J., Mei, W.N., Dowben, P.A., Nagase, S., Gao, Z., Lu, J.: Structure and electronic and transport properties of transition metal intercalated graphene and graphene-hexagonal-boron-nitride bilayer. J. Phys. Chem. C 115, 25273–2528 (2011)

    Article  Google Scholar 

  19. Ando, Y.: Topological insulator materials. J. Phys. Soc. Jpn. 82, 102001 (2013)

    Article  ADS  Google Scholar 

  20. Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, Y.S., Cava, R.J., Hasan, M.Z.: A topological Dirac insulator in a quantum spin hall phase. Nature 452, 970–974 (2008)

    Article  ADS  Google Scholar 

  21. Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., Bansil, A., Grauer, D., Hor, Y.S., Cava, R.J., Hasan, M.Z.: Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat Phys. 5, 398–402 (2009)

    Article  Google Scholar 

  22. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  23. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k (An augmented plane wave plus local orbitals program for calculating crystal properties). University of Technology, Vienna/Austria (2014)

  24. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  25. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997)

    Article  ADS  Google Scholar 

  26. Anderson, O.K.: Linear methods in band theory. Phys. Rev. B 12, 3060–3083 (1975)

    Article  ADS  Google Scholar 

  27. Loucks, T.L.: Augmented Plan Wave Method. W.A. Benjamin, New York (1967)

    Google Scholar 

  28. Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010)

    Article  ADS  Google Scholar 

  29. Galperin, F.M.: Magnetic moments of Fe, Co and N. Phys. Lett. A 28, 360 (1969)

    Google Scholar 

  30. Pauling, L.: The Nature of the Chemical Bond. Cornell University Press, New York (1960)

    MATH  Google Scholar 

  31. Fu, L., Kane, C.L.: Time reversal polarization and a Z 2 adiabatic spin pump. Phys. Rev. B 74, 195312 (2006)

    Article  ADS  Google Scholar 

  32. Lin, Y., Li, Y.Y., Rajput, S., Gilks, D., Lari, L., Galindo, P.L., Weinert, M., Lazarov, V.K., Li, L.: Tuning Dirac states by strain in the topological insulator Bi2Se3. Nat. Phys. 10, 294–299 (2014)

    Article  Google Scholar 

  33. Hsieh, D., Xia, Y., Qian, D., Wray, L., Dil, J.H., Meier, F., et al.: A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009)

    Article  ADS  Google Scholar 

  34. Arakane, T., Sato, T., Souma, S., Kosaka, K., Nakayama, K., Komatsu, M., Takahashi, T.: Tunable Dirac cone in the topological insulator Bi2−x SbxTe3−y Sey. Nat. Commun. 3, 636 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Nourbakhsh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheyri, A., Nourbakhsh, Z. & Darabi, E. The Electronic and Magnetic Properties and the Topological Phase Graphene Sheet with Fe, Co, Si, and Ge Impurities. J Supercond Nov Magn 29, 985–993 (2016). https://doi.org/10.1007/s10948-016-3401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3401-x

Keywords

Navigation