Skip to main content
Log in

Estimation of Intraband and Interband Relative Coupling Constants from Temperature Dependences of the Order Parameter for Two-Gap Superconductors

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We present temperature dependences of the large and the small superconducting gaps measured directly by SnS-Andreev spectroscopy in various Fe-based superconductors and MgB2. The experimental Δ L, S (T) are well-fitted with a two-gap model based on Moskalenko and Suhl system of equations (supplemented with a BCS-integral renormalization). From the fitting procedure, we estimate the key attribute of superconducting state — relative electron-boson coupling constants and eigen BCS-ratios for both condensates. Our results evidence for a driving role of a strong intraband coupling in the bands with the large gap, whereas interband coupling is rather weak for all the superconductors under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kamihara, Y., et al.: J. Am. Chem. Soc. 128, 10012 (2006)

    Article  Google Scholar 

  2. Mazin, I.I., Schmalian, J.: Physica C 469, 614 (2009)

    Article  ADS  Google Scholar 

  3. Onari, S., Kontani, H.: Phys. Rev. B 81, 060504(R) (2010)

    Article  ADS  Google Scholar 

  4. Nekrasov, I.A., et al.: JETP Lett. 87, 620 (2008)

    Article  Google Scholar 

  5. Kuroki, K., et al.: Phys. Rev. Lett. 101, 087004 (2008)

    Article  ADS  Google Scholar 

  6. Charnukha, A., et al.: Sci. Reports 5, 10392 (2015)

    Article  ADS  Google Scholar 

  7. Yin, Y., et al.: Physica C 469, 535 (2009)

    Article  ADS  Google Scholar 

  8. Zhigadlo, N.D., et al.: Phys. Rev. B 86, 214509 (2012)

    Article  ADS  Google Scholar 

  9. Inosov, D.S., et al.: Phys. Rev. B 83, 214520 (2011)

    Article  ADS  Google Scholar 

  10. Kuzmicheva, T.E., et al.: Physics-Uspekhi 57, 13 (2014)

    Article  Google Scholar 

  11. Daghero, D. et al.: Supercond. Sci. Technol. 25, 084012 (2012)

    Article  ADS  Google Scholar 

  12. Kuzmicheva, T.E., et al.: JETP Lett. 99, 136 (2014)

    Article  ADS  Google Scholar 

  13. Daghero, D., et al.: Rep. Prog. Phys. 74, 124509 (2011)

    Article  ADS  Google Scholar 

  14. Andreev, A.F.: Sov. Phys. JETP 19, 1228 (1964)

    Google Scholar 

  15. Moskalenko, V.A.: Fiz. Met. Metall 8, 503 (1959)

    Google Scholar 

  16. Suhl, H., et al.: Phys. Rev. Lett. 3, 552 (1959)

    Article  ADS  Google Scholar 

  17. Kuzmichev, S.A., et al.: JETP Lett. 95, 537 (2012)

    Article  ADS  Google Scholar 

  18. Morozov, I.V., et al.: Cryst. Growth Des. 10, 4428 (2010)

    Article  Google Scholar 

  19. Kondrat, A., et al.: Eur. Phys. J. B. 70, 461 (2009)

    Article  ADS  Google Scholar 

  20. Ponomarev, Ya. G., et al.: Phys. Rev. B 79, 224517 (2009)

    Article  ADS  Google Scholar 

  21. Zhigadlo, N.D., et al.: Phys. Rev. B 82, 064517 (2010)

    Article  ADS  Google Scholar 

  22. Khlybov, E.P., et al.: JETP Lett. 90, 387 (2009)

    Article  ADS  Google Scholar 

  23. Krasnosvobodtsev, S.I., et al.: J. Tech. Phys. 48, 1071 (2003)

    Article  ADS  Google Scholar 

  24. Sevastyanova, L.G., et al.: Russ. Chem. Bull. 52, 1674 (2003)

    Article  Google Scholar 

  25. Ponomarev, Ya. G., et al.: Inst. Phys. Conf. Ser. 167, 241 (2000)

    Google Scholar 

  26. Kuzmicheva, T.E., et al.: EPL 102, 67006 (2013)

    Article  ADS  Google Scholar 

  27. Moreland, J., Ekin, J.W.: J. Appl. Phys. 58, 3888 (1985)

    Article  ADS  Google Scholar 

  28. Shanygina, T.E. et al.: JETP Lett. 93, 94 (2011)

    Article  ADS  Google Scholar 

  29. Shanygina, T.E., et al.: J. Phys.: Conf. Ser. 391, 012138 (2012)

    ADS  Google Scholar 

  30. Kuzmichev, S.A., et al.: JETP Lett. 95, 537 (2012)

    Article  ADS  Google Scholar 

  31. Kuzmichev, S.A., et al.: JETP Lett. 98, 722 (2013)

    Article  ADS  Google Scholar 

  32. Sharvin, Yu.V.: Sov. Phys. JETP 21, 655 (1965)

    ADS  Google Scholar 

  33. Octavio, M., et al.: Phys. Rev. B 27, 6739 (1983)

    Article  ADS  Google Scholar 

  34. Arnold, G.B.: J. Low Temp. Phys. 68, 1 (1987)

    Article  ADS  Google Scholar 

  35. Kümmel, R., et al.: Phys. Rev. B 42, 3992 (1990)

    Article  ADS  Google Scholar 

  36. Nakamura, H., et al.: J. Phys. Soc. Jpn 78, 123712 (2009)

    Article  ADS  Google Scholar 

  37. Ponomarev, Ya. G, et al.: Physica C 243, 167 (1995)

    Article  ADS  Google Scholar 

  38. Shan, L., et al.: EPL 83, 57004 (2008)

    Article  ADS  Google Scholar 

  39. Zhu, et al.: Supercond. Sci. Technol. 21, 105001 (2008)

    Article  ADS  Google Scholar 

  40. Klapwijk, T.M., Ryabchun, S.A.: J. Exp. Theor. Phys. 119, 997 (2014)

    Article  ADS  Google Scholar 

  41. Eltsev, Yu.F., et al.: Phys. Rev. B 65, 140501(R) (2002)

    Article  ADS  Google Scholar 

  42. Eltsev, Yu.F., et al.: Phys. Rev. B 66, 180504(R) (2002)

    Article  ADS  Google Scholar 

  43. Ponomarev, Ya.G., et al.: J. Supercond. Novel Magn. 26, 2867 (2013)

    Article  Google Scholar 

  44. Shanygina, T.E., et al.: J. Supercond. Novel Magn. 26, 2661 (2013)

    Article  Google Scholar 

  45. Abdel-Hafiez, M., et al.: Phys. Rev. B 90, 054524 (2014)

    Article  ADS  Google Scholar 

  46. Roslova, M.V., et al.: CrystEngComm 16, 6919 (2014)

    Article  Google Scholar 

  47. Nicol, E.J., Carbotte, J.P.: Phys. Rev. B 71, 054501 (2005)

    Article  ADS  Google Scholar 

  48. Pickett, W.: Nature 418, 733 (2002)

    Article  ADS  Google Scholar 

  49. Ponomarev, Ya.G, et al.: JETP Lett 79, 484 (2004)

    Article  ADS  Google Scholar 

  50. Ponomarev, Ya.G, et al.: Solid State Comm 129, 85 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Ya.G. Ponomarev, A. Charnukha for useful discussions, N.D. Zhigadlo, T. Hänke, C. Hess, B. Behr, R. Klingeler, S. Wurmehl, B. Büchner, I.V. Morozov, S.I. Krasnosvobodtsev, E.P. Khlybov, L.F. Kulikova, A.V. Sadakov, B.M. Bulychev, L.G. Sevast’yanova, K.P. Burdina, V.K. Gentchel for samples synthesis and characterization. This work was supported by RFBR Grants 13-02-01451 and 14-02-90425.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kuzmichev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmichev, S.A., Kuzmicheva, T.E., Tchesnokov, S.N. et al. Estimation of Intraband and Interband Relative Coupling Constants from Temperature Dependences of the Order Parameter for Two-Gap Superconductors. J Supercond Nov Magn 29, 1111–1116 (2016). https://doi.org/10.1007/s10948-016-3386-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3386-5

Keywords

Navigation