Skip to main content
Log in

Particular type of a gap in the spectrum of multiband superconductors

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We show that in contrast to the free electron model (standard BCS model), a particular gap in the spectrum of multiband superconductors opens at some distance from the Fermi energy, if conduction band is composed of hybridized atomic orbitals of different symmetries. This gap has composite superconducting-hybridization origin, because it exists only if both the superconductivity and the hybridization between different kinds of orbitals are present. Therefore, for many classes of superconductors with multiorbital structure such spectrum changes should take place. These particular changes in the spectrum at some distance from the Fermi level result in slow convergence of the spectral weight of the optical conductivity even in quite conventional superconductors with isotropic s-wave pairing mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Basov, S. I. Woods, A. S. Katz, E. J. Singley, R. C. Dynes, M. Xu, D. G. Hinks, C. C. Homes, and M. Strongin, Science 283, 49 (1999).

    Article  ADS  Google Scholar 

  2. H. Molegraaf, C. Presura, D. van der Marel, P. H. Kes, and M. Li, Science 295, 2239 (2002).

    Article  ADS  Google Scholar 

  3. A. F. Santander-Syro, R. P. S. M. Lobo, N. Bontemps, W. Lopera, D. Girata, Z. Konstantinovic, Z. Z. Li, and H. Raffy, Phys. Rev. B 70, 134504 (2004).

    Article  ADS  Google Scholar 

  4. A. V. Boris, N. N. Kovaleva, O. V. Dolgov, T. Holden, C. T. Lin, B. Keimer, and C. Bernhard, Science 304, 708 (2004).

    Article  ADS  Google Scholar 

  5. C. C. Homes, S. V. Dordevic, D. A. Bonn, R. Liang, and W. N. Hardy, Phys. Rev. B 69, 024514 (2004).

    Article  ADS  Google Scholar 

  6. G. Deutscher, A. F. Santander-Syro, and N. Bontemps, Phys. Rev. B 72, 092504 (2005).

    Article  ADS  Google Scholar 

  7. F. Carbone, A. B. Kuzmenko, H. J. A. Molegraaf, E. van Heumen, V. Lukovac, F. Marsiglio, D. van der Marel, K. Haule, G. Kotliar, H. Berger, S. Courjault, P. H. Kes, and M. Li, Phys. Rev. B 74, 064510 (2006).

    Article  ADS  Google Scholar 

  8. A. Charnukha, P. Popovich, Y. Matiks, D. L. Sun, C. T. Lin, A. N. Yaresko, B. Keimer, and A. V. Boris, Nat. Commun. 2, 219 (2011).

    Article  ADS  Google Scholar 

  9. A. Charnukha, J. Phys.: Condens. Matter 26, 253203 (2014).

    Google Scholar 

  10. I. I. Mazin and V. P. Antropov, Physica C 385, 49 (2003).

    Article  ADS  Google Scholar 

  11. E. Manousakis, J. Ren, S. Sheng Meng, and E. Kaxiras, Phys. Rev. B 78, 205112 (2008).

    Article  ADS  Google Scholar 

  12. C. Cao, P. J. Hirschfeld, and Ch. Hai-Ping, Phys. Rev. B 77, 220506(R) (2008).

    Article  ADS  Google Scholar 

  13. M. Daghofer, A. Nicholson, A. Moreo, and E. Dagotto, Phys. Rev. B 81, 014511 (2010).

    Article  ADS  Google Scholar 

  14. R. M. Fernandes and A. V. Chubukov, Rep. Prog. Phys. 80, 014503 (2017).

    Article  ADS  Google Scholar 

  15. A. Hinojosa and A. V. Chubukov, Phys. Rev. B 91, 224502 (2015).

    Article  ADS  Google Scholar 

  16. T. Agatsuma and T. Hotta, J. Magn. Magn. Mater. 400, 73 (2016).

    Article  ADS  Google Scholar 

  17. A. Nicholson, Ge Weihao, J. Riera, M. Daghofer, A. Moreo, and E. Dagotto, Phys. Rev. B 85, 024532 (2012).

    Article  ADS  Google Scholar 

  18. K. Sano and Y. Ono, J. Phys. Soc. Jpn. 78, 124706 (2009).

    Article  ADS  Google Scholar 

  19. M. V. Sadovskii, Phys. Usp. 51, 1201 (2008).

    Article  ADS  Google Scholar 

  20. P. J. Hirschfeld, C.R. Phys. 17, 197 (2016).

    Article  ADS  Google Scholar 

  21. P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Prog. Phys. 74, 124508 (2011).

    Article  ADS  Google Scholar 

  22. P. I. Arseev, S. O. Loiko, and N. K. Fedorov, JETP Lett. 87, 299 (2008).

    ADS  Google Scholar 

  23. P. I. Arseev, S. O. Loiko, and N. K. Fedorov, JETP Lett. 100, 512 (2014).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Arseev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arseev, P.I., Loiko, S.O. & Fedorov, N.K. Particular type of a gap in the spectrum of multiband superconductors. Jetp Lett. 106, 349–353 (2017). https://doi.org/10.1134/S0021364017180011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017180011

Navigation