Skip to main content
Log in

Electronic Structure of NaFeAs Superconductor: LDA + DMFT Calculations Compared with ARPES Experiment

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, we present a theoretical explanation of the recent high quality angle-resolved photoemission (ARPES) experiments on a new iron-pnictide high temperature superconductor NaFeAs (Evtushinsky arXiv:1409.1537). Well known and rather universal manifestation of correlation effects in iron-pnictides is the renormalization of conducting bands near the Fermi level. Most suitable theoretical technique to describe this effect is LDA + DMFT. Our LDA + DMFT calculations demonstrate that for NaFeAs the mass renormalization by the factor of the order of 3, in good agreement with ARPES experiments, can be achieved, taking into account only correlations on Fe-3d orbitals. No additional interactions with “bosonic” modes, as proposed in Evtushinsky (arXiv:1409.1537), are necessary to describe the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Evtushinsky, D.V., et al.: arXiv:1409.1537

  2. Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: J. Am. Chem. Soc. 130, 3296–3297 (2008)

    Article  Google Scholar 

  3. Sadovskii, M.V.: Uspekhi Fiz. Nauk 178, 1243 (2008)

    Article  Google Scholar 

  4. Sadovskii, M.V.: Physics Uspekhi 51(12) (2008)

  5. Ishida, K., Nakai, Y., Hosono, H.: J. Phys. Soc. Jpn. 78, 062001 (2009)

    Article  ADS  Google Scholar 

  6. Johnson, D.C.: Adv. Phys. 59, 803 (2010)

    Article  ADS  Google Scholar 

  7. Hirshfeld, P.J., Korshunov, M.M., Mazin, I.I.: Rep. Prog. Phys. 74, 124508 (2011)

    Article  ADS  Google Scholar 

  8. Sadovskii, M.V., Kuchinskii, E.Z., Nekrasov, I.A.: JMMM 324, 3481 (2012)

    Article  ADS  Google Scholar 

  9. Nekrasov, I.A., Sadovskii, M.V.: Pis’ma Zh. Eksp. Teor. Fiz. 99, 687 (2014). [JETP Letters, 99, 598 (2014)]

    Google Scholar 

  10. Tapp, J.H., et al.: Phys. Rev. B 78, 060505(R) (2008)

    Article  ADS  Google Scholar 

  11. Wang, X.C., et al.: Solid State Commun. 11-12, 538 (2008)

    Article  ADS  Google Scholar 

  12. Nekrasov, I.A., Pchelkina, Z.V., Sadovskii, M.V.: Pis’ma Zh. Eksp. Teor. Fiz. 88, 621 (2008). [JETP Letters 88, 543]

    Google Scholar 

  13. Shein, I.R., Ivanovskii, A.L.: Pis’ma Zh. Eksp. Teor. Fiz. 88, 377 (2008). [JETP Letters, 88, 329 (2008)]

    Google Scholar 

  14. Damascelli, A., Hussain, Z., Shen, Z.-X.: Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  15. Kordyuk, A.A.: Fizika Nizkikh Temperatur 38, 1119 (2012)

    Google Scholar 

  16. Kordyuk, A.A.: Low Temp. Phys. 38, 888 (2012)

    Article  ADS  Google Scholar 

  17. Popovich, P., et al.: Phys. Rev. Lett. 105, 027003 (2010)

    Article  ADS  Google Scholar 

  18. Borisenko, S., et al.: Phys. Rev. Lett. 105, 067002 (2010)

    Article  ADS  Google Scholar 

  19. Ding, H., et al.: J. Phys. Condens. Matter 23, 135701 (2011)

    Article  ADS  Google Scholar 

  20. Cui, S.T., et al.: Phys. Rev. B 86, 155143 (2012)

    Article  ADS  Google Scholar 

  21. Evtushinsky, D.V., et al.: Phys. Rev. B 89, 064514 (2014)

    Article  ADS  Google Scholar 

  22. Haule, K., Shim, J.H., Kotliar, G.: Phys. Rev. Lett. 100, 226402 (2008)

    Article  ADS  Google Scholar 

  23. Craco, L., et al.: Phys. Rev. B 78, 134511 (2008)

    Article  ADS  Google Scholar 

  24. Shorikov, A.O., et al.: Zh. Eksp. Teor. Fiz. 135, 134 (2009). [JETP 108, 121 (2008)]

    Google Scholar 

  25. Skornyakov, S.L., et al.: Phys. Rev. B 80, 092501 (2009)

    Article  ADS  Google Scholar 

  26. Held, K., et al.: Int. J. Mod. Phys. B 15, 2611 (2001)

    Article  ADS  Google Scholar 

  27. Kotliar, G., et al.: Rev. Mod. Phys. 78, 865 (2006)

    Article  ADS  Google Scholar 

  28. Parker, D.R., et al.: Chem. Commun. 16, 2189 (2009)

    Article  Google Scholar 

  29. Blaha, P., et al.: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Techn. Universitat Wien, Austria), 2001. ISBN 3-9501031-1-2

  30. Nekrasov, I.A., Pavlov, N.S., Sadovskii, M.V.: Pisma v ZhETF 102, 30 (2015). [JETP Letters 102, 26 (2015)] arXiv:1505.04963

    Google Scholar 

  31. Kunes, J., et al.: Comp. Phys. Commun. 181, 1888 (2010)

    Article  ADS  Google Scholar 

  32. Mostofi, A.A., Yates, J.R., Lee, Y.-S., Souza, I., Vanderbilt, D., Marzari, N.: Comput. Phys. Commun. 178, 685 (2008)

    Article  ADS  Google Scholar 

  33. Werner, P., et al.: Phys. Rev. Lett. 97, 076405 (2006)

    Article  ADS  Google Scholar 

  34. Haule, K.: Phys. Rev. B 75, 155113 (2007)

    Article  ADS  Google Scholar 

  35. Gull, E., et al.: Rev. Mod. Phys. 83, 349 (2011)

    Article  ADS  Google Scholar 

  36. Ferrero, M., Parcollet, O.: TRIQS: a Toolbox for Research in Interacting Quantum Systems. http://ipht.cea.fr/triqs

  37. Aichhorn, M., et al.: Phys. Rev. B 80, 085101 (2009)

    Article  ADS  Google Scholar 

  38. Boehnke, L., et al.: Phys. Rev. B 84, 075145 (2011)

    Article  ADS  Google Scholar 

  39. Skornyakov, S.L., et al.: Pis’ma v ZhETF 96, 123 (2012). [JETP Letters 96, 118 (2012)]

    Google Scholar 

  40. Ferber, J., et al.: Phys. Rev. B 85, 094505 (2012)

    Article  ADS  Google Scholar 

  41. Lee, G., et al.: Phys. Rev. Lett. 109, 177001 (2012)

    Article  ADS  Google Scholar 

  42. Vidberg, H.J., Serene, J.W.: J. Low Temp. Phys. 29, 179 (1977)

    Article  ADS  Google Scholar 

  43. Borisenko, S.V., et al.: Phys. Rev. Lett. 105, 067002 (2010)

    Article  ADS  Google Scholar 

  44. Yi, M., et al.: New J. Phys. 14, 073019 (2012)

    Article  ADS  Google Scholar 

  45. Cui, S.T., et al.: Phys. Rev. B 86, 155143 (2012)

    Article  ADS  Google Scholar 

  46. Fink, J., et al.: arXiv:1501.02135

  47. Nekrasov, I.A., Pavlov, N.S., Sadovskii, M.V.: Pis’ma v ZhETF 95, 659 (2012). [JETP Letters 95, 581 (2012)]

    Google Scholar 

  48. Nekrasov, I.A., Pavlov, N.S., Sadovskii, M.V.: Zh. Eksp. Teor. Fiz. 143, 713 (2013). [JETP 116, 620 (2013)]

    Google Scholar 

  49. Nekrasov, I.A., Pavlov, N.S., Sadovskii, M.V.: Pis’ma. Zh. Eksp. Teor. Fiz. 97, 18 (2013). [JETP Lett. 97, 15 (2013)]

    Google Scholar 

  50. Nekrasov, I.A., Pavlov, N.S., Sadovskii, M.V.: Zh. Eksp. Teor. Fiz. 144, 1061 (2013). [JETP 117, 926 (2013)]

    Google Scholar 

  51. Brouet, V., et al.: Rev. B 86, 075123 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We thank D. Evtushinsky for many helpful discussions of the ARPES experimental data, A. Lichtenstein and I. Krivenko for providing us their CT-QMC code, and A. Sandvik for making available his maximum entropy program. We are especially grateful to G.N. Rykovanov for providing us the access to VNIITF “Zubr” supercomputer, at which most of our CT-QMC computations were performed. Also, part of CT-QMC computations were performed at supercomputer “Uran” at the Institute of Mathematics and Mechanics UB RAS.

This work was done under the State Contract No. 0389-2014-0001 and partly supported by RFBR grant No. 14-02-00065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Nekrasov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekrasov, I.A., Pavlov, N.S. & Sadovskii, M.V. Electronic Structure of NaFeAs Superconductor: LDA + DMFT Calculations Compared with ARPES Experiment. J Supercond Nov Magn 29, 1117–1122 (2016). https://doi.org/10.1007/s10948-016-3377-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3377-6

Keywords

Navigation