Skip to main content
Log in

Structural, Microstructural, and Magnetic Studies on Magnesium (Mg2+)-Substituted CoFe2O4 Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The present work deals with the synthesis and characterizations of magnesium-substituted cobalt ferrite (Co 1−x Mg x Fe 2 O 4; x = 0.00, 0.25, 0.50, 0.75, 1.00) nanoparticles by sol-gel auto combustion method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) techniques were used for the characterization of the prepared samples. The magnetic properties were studied through pulse field hysteresis loop technique at room temperature. The XRD patterns of all the samples show the reflection which belongs to the cubic spinel structure. The XRD analysis confirmed the single-phase formation of spinel structure for the present ferrite system. Various structural parameters such as tetrahedral ionic radius (r A), the octahedral ionic radius (r B), theoretical lattice constant (a th), hopping length (L A and L B), tetrahedral bond length (d AL), octahedral bond length (d BL), tetra edge (d AE) and octa edge (d BE) were calculated from the XRD data. The variation of these structural parameters in magnesium composition has been studied. The M-H curves recorded at room temperature exhibit a typical hysteresis loop indicating that the sample exhibits a magnetic nature, which decreases with an increase in Mg content x. The large coercivity (H c) values indicate a nanocrystalline nature of the present samples. The coercivity, saturation magnetization, remanence magnetization, and magneton number decreases with an increase in Mg content x.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Standley, K.J.: Oxide magnetic materials, 2nd edition (1972)

  2. Sato Turtello, R., Duong, G.V., Nunes, W., Grpssinger, R., Knobel, M.: J. Magn. Magn. Mater. 320, 339 (2008)

    Article  ADS  Google Scholar 

  3. Hannour, A., Vincent, D., Kahlouche, F., Tchangoulian, A., Neveu, S., Dupuis, V.: J. Magn. Magn. Mater. 353, 29–33 (2014)

    Article  ADS  Google Scholar 

  4. Murdock, E.S., Simmons, R.F., Davidson, R.: IEEE Trans. Magn. 5(2), 3078–3083 (1992)

    Article  ADS  Google Scholar 

  5. Okuno, S.N., Hashimoto, S., Inomata, K.: J. Appl. Phys. 71, 5926–5929 (1992)

    Article  ADS  Google Scholar 

  6. Raut, A.V., Barkule, R.S., Shengule, D.R., Jadhav, K.M.: J. Magn. Magn. Mater. 358–359, 87–92 (2014)

    Article  Google Scholar 

  7. Shinde, S.S., Jadhav, K.M.: J. Mater. Sci. Lett. 17, 849–851 (1998)

    Article  Google Scholar 

  8. Birajdar, D.S., Devatwal, U.N., Jadhav, K.M.: J. Mater. Sci. 37, 1443–1448 (2002)

    Article  ADS  Google Scholar 

  9. Karimi, Z., Mohammadifar, Y., Shokrollahi, H., KhamenehAsl, Sh., Yousefi, Gh., Karimi, L.: J. Magn. Magn. Mater. 361, 150–156 (2014)

    Article  ADS  Google Scholar 

  10. Modi, K.B., Rangolia, M.K., Chhantbar, M.C., Joshi, H.H.: J. Mater. Sci. 41, 22 (2006)

    Article  Google Scholar 

  11. Pradeep, A., Priyadharsini, P., Chandrasekaran, G.: J. Alloys Compd. 509, 39173923 (2011)

    Article  Google Scholar 

  12. Vasambekar, P.N., Kolekar, C.B., Vaingankar, A.S.: J. Magn. Magn. Mater. 186, 333 (1998)

    Article  ADS  Google Scholar 

  13. Mathew, D.S., Juang, R.S.: Chem. Eng. J. 129, 51 (2007)

    Article  Google Scholar 

  14. Vinayak, V., Khirade, P.P., Birajdar, S.D., Alange, R.C., Jadhav, K.M.: J Supercond Nov Magn. doi:10.1007/s10948-015-3159-6

  15. Pornprasertsuk, R., Yuwapttanawong, C., Permkittikul, S., Tungtidtham, T.: Int. J. Precis. Eng. Manuf. 13(10), 1813–1819 (2012)

    Article  Google Scholar 

  16. Thankachan, S., Jacob, B.P., Xavier, S., Mohammed, E.M.: J. Magn. Magn. Mater. 348, 140–145 (2013)

    Article  ADS  Google Scholar 

  17. Pandit, A.A., Shitre, A.R., Shengule, D.R., Jadhav, K.M.: J. Mater. Sci. 40(2) (2005)

  18. Waldron, R.A.: Ferrites: an introduction for microwave engineers (1961)

  19. Hafner, S., Laves, F.Z.: Krist. 115, 331 (1961)

    Article  Google Scholar 

  20. Kurmude, D.V., Shinde, A.B., Pandit, A. A., Kale, C.M., Shengule, D.R., Jadhav, K.M.: J. Supercond. Nov. Magn. doi:10.1007/s10948-014-2943-z

  21. Pradeep, A., Priyadharsini, P., Chandrasekaran, G.: J. Alloys Compd. 509, 39173923 (2011)

  22. Vasambekar, P.N., Kolekar, C.B., Vaingankar, A.S.: J. Magn. Magn. Mater. 186, 333 (1998)

    Article  ADS  Google Scholar 

  23. Mathew, D.S., Juang, R.S.: Chem. Eng. J. 129, 51 (2007)

    Article  Google Scholar 

  24. Wells, S., Ramana, C.V.: Ceram. Int. 39, 9549 (2013)

    Article  Google Scholar 

  25. Lin, X.M., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C.: Langmuir 14, 7140 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to IIT Mumbai for providing X-ray diffraction facility and Savitribai Phule Pune University, Pune, for FTIR and scanning electron microscopy (SEM) characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Jadhav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinayak, V., Khirade, P.P., Birajdar, S.D. et al. Structural, Microstructural, and Magnetic Studies on Magnesium (Mg2+)-Substituted CoFe2O4 Nanoparticles. J Supercond Nov Magn 29, 1025–1032 (2016). https://doi.org/10.1007/s10948-015-3348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3348-3

Keywords

Navigation