Skip to main content
Log in

Thermal, microstructural and magnetic properties of manganese substitution cobalt ferrite prepared via co-precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Manganese-substituted cobalt nano-ferrites, Co(1−x)Mn(x)Fe2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) were synthesized using chemical co-precipitation method. Physical properties of Co(1−x)Mn(x)Fe2O4 nano-ferrites were then characterized using thermal gravimetric—differential thermal analysis (TGA/DTA), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectrometer, transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). TGA/DTA study indicates that the thermal stability of the prepared manganese doped cobalt ferrite nanoparticles. X-ray diffraction patterns of all the prepared ferrite samples show good in quality, pure nanosized, single-phased cubical spinel structures, with ferromagnetic behavior. We demonstrated that the expansion of lattice constant (a) and crystallite size (D) induced by manganese substituted of cobalt ferrites exerted remarkable effects on its structural and magnetic properties. The lattice constant (a) and crystallite size (D) increase with increasing manganese substituted cobalt ferrites. Williamson–Hall (W–H) method was used to evaluate the crystallite size and lattice strain of the Co(1−x) Mn(x)Fe2O4 nanoparticles samples by peak broadening. The calculated crystal size of Co(1−x) Mn(x)Fe2O4 nanoparticles on the W–H plots were highly intercorrelated with the HR-TEM and results of Scherrer Deby equation. The other physical parameters, such as X-ray density, hopping length, ionic radius, bond length, tetrahedral edge, octahedral edge, and unshared octahedral edge values were estimated from the highest intensity peak (311) of X-ray diffraction. The Fourier transform infrared (FT-IR) spectrometer of the Co–Mn ferrite nanoparticles systems were recorded in the frequency range of 200–1000 cm−1. FT-IR spectra show the two fundamental absorption bands of interstitial sub-lattice sites (M–O). The high absorption band (ν1) and the low absorption band (ν2) corresponds to the tetrahedral [A] and octahedral (B) sites, respectively, confirming the formation of single cubic spinel ferrite lattice system. The TEM results show that the ferrite nanoparticles have a nearly spherical shape with some agglomerations. From the analysis of VSM, the values of saturation magnetization (Ms) increases from 31.46 to 37.16 emu/g, then decreases with increasing Mn2+ ions substitution in the Co-ferrite system. The coercivity of the Mn2+ ions substituted cobalt ferrites increases up to x = 0.6 followed by a decrease. The optimized magnetic parameters suggest that the material with composition Co0.6Mn0.4Fe2O4 may be suitable for longitudinal magnetic recording media and other various technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. G. Muscas, S. Jovanović, M. Vukomanović, M. Spreitzer, D. Peddis, Zn-doped cobalt ferrite: tuning the interactions by chemical composition. J. Alloy. Compd. 796, 203–209 (2019)

    Article  CAS  Google Scholar 

  2. S. Kavitha, M. Kurian, Effect of zirconium doping in the microstructure, magnetic and dielectric properties of cobalt ferrite nanoparticles. J. Alloy. Compd. 799, 147–159 (2019)

    Article  CAS  Google Scholar 

  3. H. Kaur, A. Singh, V. Kumar, D.S. Ahlawat, Structural, thermal and magnetic investigations of cobalt ferrite doped with Zn2+ and Cd2+ synthesized by auto combustion method. J. Magn. Magn. Mater. 474, 505–511 (2019)

    Article  CAS  Google Scholar 

  4. R. Jasrotia, G. Kumar, K.M. Batoo, S.F. Adil, M. Khan, R. Sharma, A. Kumar, V.P. Singh, Synthesis and characterization of Mg-Ag-Mn nano-ferrites for electromagnet applications. Physica B 569, 1–7 (2019)

    Article  CAS  Google Scholar 

  5. N. Hamdaoui, Y. Azizian-Kalandaragh, M. Khlifi, L. Beji, Cd-doping effect on morphologic, structural, magnetic and electrical properties of Ni0.6-xCdxMg0.4Fe2O4 spinel ferrite (0 ≤ x ≤ 0.4). J. Alloys Compd. 803, 964–970 (2019)

    Article  CAS  Google Scholar 

  6. G. Bulai, L. Diamandescu, I. Dumitru, S. Gurlui, M. Feder, O.F. Caltun, Effect of rare earth substitution in cobalt ferrite bulk materials. J. Magn. Magn. Mater. 390, 123–131 (2015)

    Article  CAS  Google Scholar 

  7. M.K. Satheeshkumar, E. Ranjith Kumar, C. Srinivas, G. Prasad, S.S. Meena, I. Pradeep, N. Suriyanarayanan, D.L. Sastry, Structural and magnetic properties of CuFe2O4 ferrite nanoparticles synthesized by cow urine assisted combustion method. J. Magn. Magn. Mater. 484, 120–125 (2019)

    Article  CAS  Google Scholar 

  8. B. Parvatheeswara Rao, B. Dhanalakshmi, S. Ramesh, P.S.V. Subba Rao, Cation distribution of Ni-Zn-Mn ferrite nanoparticles. J. Magn. Magn. Mater. 456, 444–450 (2018)

    Article  CAS  Google Scholar 

  9. B. Rezaei, A. Kermanpur, S. Labbaf, Effect of Mn addition on the structural and magnetic properties of Zn-ferrite nanoparticles. J. Magn. Magn. Mater. 481, 16–24 (2019)

    Article  CAS  Google Scholar 

  10. R. Qindeel, N.H. Alonizan, Structural, dielectric and magnetic properties of cobalt based spinel ferrites. Curr. Appl. Phys. 18, 519–525 (2018)

    Article  Google Scholar 

  11. M.A. Almessiere, Y. Slimani, S. Guner, M. Sertkol, A. Demir Korkmaz, S.E. Shirsath, A. Baykal, Sonochemical synthesis and physical properties of Co03Ni0.5Mn0.2EuxFe2−xO4 nano-spinel ferrites. Ultrason. Sonochem. 58, 104654 (2019)

    Article  CAS  Google Scholar 

  12. D.Q. Han, D.H. Yin, J. Ma, F. Wang, C.L. Li, Facile synthesis and characterization of spinel ferrite NiFe2O4 nanowire arrays with a high-aspect-ratio. Ceram. Int. 44, 22997–23000 (2018)

    Article  CAS  Google Scholar 

  13. T. Dippong, F. Goga, E.-A. Levei, O. Cadar, Influence of zinc substitution with cobalt on thermal behaviour, structure and morphology of zinc ferrite embedded in silica matrix. J. Solid State Chem. 275, 159–166 (2019)

    Article  CAS  Google Scholar 

  14. R.S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, E. Bartoníčková, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajdúchová, V. Enev, Erratum to: structural and magnetic properties of CoFe 2−xGdxO4(0.0 ≤ x ≥ 0.1) spinel ferrite nanoparticles synthesized by starch-assisted sol-gel auto-combustion method. J. Supercond. Novel Magn. 29, 537–537 (2016)

    Article  CAS  Google Scholar 

  15. R. Khalifeh, R. Shahimoridi, M. Rajabzadeh, Design and synthesis of novel cage like CuFe2O4 hollow nanostructure as an efficient catalyst for synthesis of 4,4′-(aryl methylene)bis(3-methyl-1H-pyrazol-5-ol)s. Catal. Lett. 149, 2864–2872 (2019)

    Article  CAS  Google Scholar 

  16. M.S. Samadi, H. Shokrollahi, A. Zamanian, The magnetic-field-assisted synthesis of the Co-ferrite nanoparticles via reverse co-precipitation and their magnetic and structural properties. Mater. Chem. Phys. 215, 355–359 (2018)

    Article  CAS  Google Scholar 

  17. A. Shabbir, S. Ajmal, M. Shahid, I. Shakir, P.O. Agboola, M.F. Warsi, Zirconium substituted spinel nano-ferrite Mg0.2Co0.8Fe2O4 particles and their hybrids with reduced graphene oxide for photocatalytic and other potential applications, Ceramics International, 45 (2019) 16121–16129.

  18. R.R. Powar, V.D. Phadtare, V.G. Parale, H.-H. Park, S. Pathak, P.R. Kamble, P.B. Piste, D.N. Zambare, Structural, morphological, and magnetic properties of ZnxCo1-xFe2O4 (0 ≤ x ≤ 1) prepared using a chemical co-precipitation method. Ceram. Int. 44, 20782–20789 (2018)

    Article  CAS  Google Scholar 

  19. S.S. Desai, S.M. Patange, A.D. Patil, S.K. Gore, S.S. Jadhav, Effects of Zn2+-Zr4+ ions on the structural, mechanical, electrical, and optical properties of cobalt ferrites synthesized via the sol–gel route. J. Phys. Chem. Solids 133, 171–177 (2019)

    Article  CAS  Google Scholar 

  20. H. Harzali, A. Marzouki, F. Saida, A. Megriche, A. Mgaidi, Structural, magnetic and optical properties of nanosized Ni0.4Cu0.2Zn0.4R00.5Fe1.95O4 (R = Eu3+, Sm3+, Gd3+ and Pr3+) ferrites synthesized by co-precipitation method with ultrasound irradiation. J. Magn. Magn. Mater. 460, 89–94 (2018)

    Article  CAS  Google Scholar 

  21. H. Sharifi, M.M. Shokrollahi, R. Doroodmand, Safi, Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods. J. Magn. Magn. Mater. 324, 1854–1861 (2012)

    Article  CAS  Google Scholar 

  22. M. Li, X. Liu, T. Xu, Y. Nie, H. Li, C. Zhang, Synthesis and characterization of nanosized MnZn ferrites via a modified hydrothermal method. J. Magn. Magn. Mater. 439, 228–235 (2017)

    Article  CAS  Google Scholar 

  23. B.S. Randhawa, H.S. Dosanjh, M. Kaur, Preparation of spinel ferrites from citrate precursor route—a comparative study. Ceram. Int. 35, 1045–1049 (2009)

    Article  CAS  Google Scholar 

  24. T.E.P. Alves, H.V.S. Pessoni, A. Franco Jr., The effect of Y3+ substitution on the structural, optical band-gap, and magnetic properties of cobalt ferrite nanoparticles. Phys. Chem. Chem. Phys. 19, 16395–16405 (2017)

    Article  CAS  Google Scholar 

  25. R. Dou, H. Cheng, J. Ma, S. Komarneni, Manganese doped magnetic cobalt ferrite nanoparticles for dye degradation via a novel heterogeneous chemical catalysis. Mater. Chem. Phys. 240, 122181 (2020)

    Article  CAS  Google Scholar 

  26. V. Vinayak, P.P. Khirade, S.D. Birajdar, R.C. Alange, K.M. Jadhav, Electrical and dielectrical properties of low-temperature-synthesized nanocrystalline Mg2+-substituted cobalt spinel ferrite. J. Supercond. Novel Magn. 28, 3351–3356 (2015)

    Article  CAS  Google Scholar 

  27. S.P. Yadav, S.S. Shinde, A.A. Kadam, K.Y. Rajpure, Structural, morphological, dielectrical and magnetic properties of Mn substituted cobalt ferrite. J. Semicond. 34, 093002 (2013)

    Article  Google Scholar 

  28. O. Karaagac, B.B. Yildiz, H. Köçkar, The influence of synthesis parameters on one-step synthesized superparamagnetic cobalt ferrite nanoparticles with high saturation magnetization. J. Magn. Magn. Mater. 473, 262–267 (2019)

    Article  CAS  Google Scholar 

  29. H. Ghayour, M. Abdellahi, M.G. Nejad, A. Khandan, S. Saber-Samandari, Study of the effect of the Zn2+ content on the anisotropy and specific absorption rate of the cobalt ferrite: the application of Co1 − xZnxFe2O4 ferrite for magnetic hyperthermia. J. Aust. Ceram. Soc. 54, 223–230 (2018)

    Article  CAS  Google Scholar 

  30. M.M.N. Ansari, S. Khan, N. Ahmad, Effect of R3+ (R = Pr, Nd, Eu and Gd) substitution on the structural, electrical, magnetic and optical properties of Mn-ferrite nanoparticles. J. Magn. Magn. Mater. 465, 81–87 (2018)

    Article  CAS  Google Scholar 

  31. A. Lassoued, M.S. Lassoued, B. Dkhil, S. Ammar, A. Gadri, Substituted effect of Al3+ on structural, optical, magnetic and photocatalytic activity of Ni ferrites. J. Magn. Magn. Mater. 476, 124–133 (2019)

    Article  CAS  Google Scholar 

  32. P. Thakur, R. Sharma, M. Kumar, S.C. Katyal, P.B. Barman, V. Sharma, P. Sharma, Structural, morphological, magnetic and optical study of co-precipitated Nd3+ doped Mn-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 479, 317–325 (2019)

    Article  CAS  Google Scholar 

  33. D. Sharma, N. Khare, Tailoring the optical bandgap and magnetization of cobalt ferrite thin films through controlled zinc doping. AIP Adv. 6, 085005 (2016)

    Article  Google Scholar 

  34. O. Karaagac, B. Bilir, H. Kockar, Superparamagnetic cobalt ferrite nanoparticles: effect of temperature and base concentration. J. Supercond. Novel Magn. 28, 1021–1027 (2015)

    Article  CAS  Google Scholar 

  35. O. Karaagac, H. Köçkar, The effects of temperature and reaction time on the formation of manganese ferrite nanoparticles synthesized by hydrothermal method. J. Mater. Sci. 31, 2567–2574 (2020)

    CAS  Google Scholar 

  36. F. Ozel, H. Kockar, Growth and characterizations of magnetic nanoparticles under hydrothermal conditions: reaction time and temperature. J. Magn. Magn. Mater. 373, 213–216 (2015)

    Article  CAS  Google Scholar 

  37. F. Ozel, H. Kockar, A Simple method of synthesis and characterizations of oleate-coated iron oxide nanoparticles. J. Supercond. Novel Magn. 30, 2023–2027 (2017)

    Article  CAS  Google Scholar 

  38. Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen, M. Li, Hydrothermal synthesis of nanomaterials. J. Nanomater. 2020, 8917013 (2020)

    Article  Google Scholar 

  39. O. Karaagac, H. Kockar, A simple way to obtain high saturation magnetization for superparamagnetic iron oxide nanoparticles synthesized in air atmosphere: Optimization by experimental design. J. Magn. Magn. Mater. 409, 116–123 (2016)

    Article  CAS  Google Scholar 

  40. O. Karaagac, H. Kockar, Effect of synthesis parameters on the properties of superparamagnetic iron oxide nanoparticles. J. Supercond. Novel Magn. 25, 2777–2781 (2012)

    Article  CAS  Google Scholar 

  41. O. Karaagac, H. Kockar, T. Tanrisever, Properties of iron oxide nanoparticles synthesized at different temperatures. J. Supercond. Novel Magn. 24, 675–678 (2011)

    Article  CAS  Google Scholar 

  42. M. Kurian, S. Thankachan, D.S. Nair, E.K. Aswathy, A. Babu, A. Thomas, K.T. Binu Krishna, Structural, magnetic, and acidic properties of cobalt ferrite nanoparticles synthesised by wet chemical methods. J. Adv. Ceram. 4, 199–205 (2015)

    Article  CAS  Google Scholar 

  43. G.-Y. Kim, J.-H. Jeon, M.-H. Kim, D. Suvorov, S.-Y. Choi, Microstructural development of cobalt ferrite ceramics and its influence on magnetic properties. Met. Mater. Int. 19, 1209–1213 (2013)

    Article  CAS  Google Scholar 

  44. L. Fkhar, A. El Kenz, M. Hamedoun, A. Benyoussef, M. Ait Ali, O. Mounkachi, Magnetic and structural properties of novel neodymium-tin spinel ferrite nanoparticles. J. Supercond. Novel Magn. 32, 381–384 (2019)

    Article  CAS  Google Scholar 

  45. R.S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, E. Bartoníčková, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajdúchová, V. Enev, Structural and magnetic properties of CoFe2−xGdxO4 (0.0 ≤ x ≥ 0.1) spinel ferrite nanoparticles synthesized by starch-assisted sol-gel auto-combustion method. J. Supercond. Novel Magn. 28, 1797–1806 (2015)

    Article  CAS  Google Scholar 

  46. W. Wang, Z. Ding, X. Zhao, S. Wu, F. Li, M. Yue, J.P. Liu, Microstructure and magnetic properties of MFe2O4 (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method. J. Appl. Phys. 117, 17A328 (2015)

    Article  Google Scholar 

  47. S. Nasrin, F.U.Z. Chowdhury, S.M. Hoque, Study of hyperthermia temperature of manganese-substituted cobalt nano ferrites prepared by chemical co-precipitation method for biomedical application. J. Magn. Magn. Mater. 479, 126–134 (2019)

    Article  CAS  Google Scholar 

  48. S. Faraji, G. Dini, M. Zahraei, Polyethylene glycol-coated manganese-ferrite nanoparticles as contrast agents for magnetic resonance imaging. J. Magn. Magn. Mater. 475, 137–145 (2019)

    Article  CAS  Google Scholar 

  49. N. Adeela, K. Maaz, U. Khan, S. Karim, A. Nisar, M. Ahmad, G. Ali, X.F. Han, J.L. Duan, J. Liu, Influence of manganese substitution on structural and magnetic properties of CoFe2O4 nanoparticles. J. Alloy. Compd. 639, 533–540 (2015)

    Article  CAS  Google Scholar 

  50. M.M.L. Sonia, S. Anand, V.M. Vinosel, M.A. Janifer, S. Pauline, A. Manikandan, Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGdxFe2−xO4 ferrite nano-crystallites synthesized by sol-gel route. J. Magn. Magn. Mater. 466, 238–251 (2018)

    Article  CAS  Google Scholar 

  51. H. Irfan, M. Racik, S. Anand, Microstructural evaluation of CoAl2O4 nanoparticles by Williamson-Hall and size–strain plot methods. J. Asian Ceramic Soc. 6, 54–62 (2018)

    Article  Google Scholar 

  52. M. Augustin, T. Balu, Estimation of lattice stress and strain in zinc and manganese ferrite nanoparticles by Williamson-Hall and size-strain plot methods. Int. J. Nanosci. 16, 1650035 (2017)

    Article  CAS  Google Scholar 

  53. M. Zhang, Z. Zi, Q. Liu, P. Zhang, X. Tang, J. Yang, X. Zhu, Y. Sun, J. Dai, Size effects on magnetic properties of prepared by sol-gel method. Adv. Mater. Sci. Eng. 2013, 10 (2013)

    Article  Google Scholar 

  54. S. Menchaca-Nal, C.L. Londoño-Calderón, P. Cerrutti, M.L. Foresti, L. Pampillo, V. Bilovol, R. Candal, R. Martínez-García, Facile synthesis of cobalt ferrite nanotubes using bacterial nanocellulose as template. Carbohyd. Polym. 137, 726–731 (2016)

    Article  CAS  Google Scholar 

  55. R. Sharma, P. Thakur, M. Kumar, N. Thakur, N.S. Negi, P. Sharma, V. Sharma, Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloy. Compd. 684, 569–581 (2016)

    Article  CAS  Google Scholar 

  56. F. Zhang, Q. Jin, S.-W. Chan, Ceria nanoparticles: size, size distribution, and shape. J. Appl. Phys. 95, 4319–4326 (2004)

    Article  CAS  Google Scholar 

  57. S. Deshpande, S. Patil, S.V. Kuchibhatla, S. Seal, Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 87, 133113 (2005)

    Article  Google Scholar 

  58. M. Penchal Reddy, X. Zhou, A. Yann, S. Du, Q. Huang, A.M.A. Mohamed, Low temperature hydrothermal synthesis, structural investigation and functional properties of CoxMn1−xFe2O4 (0⩽x⩽1.0) nanoferrites. Superlattices Microstruct. 81, 233–242 (2015)

    Article  CAS  Google Scholar 

  59. Y. Köseoğlu, F. Alan, M. Tan, R. Yilgin, M. Öztürk, Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram. Int. 38, 3625–3634 (2012)

    Article  Google Scholar 

  60. R. Sagayaraj, S. Aravazhi, P. Praveen, G. Chandrasekaran, Structural, morphological and magnetic characters of PVP coated ZnFe2O4 nanoparticles. J. Mater. Sci. 29, 2151–2158 (2018)

    CAS  Google Scholar 

  61. M.A. Ati, H. Khudhair, S. Dabagh, R. Rosnan, A.A. Ati, Synthesis and characterization of cobalt doped nickel-ferrites nanocrystalline by co-precipitation method. Int. J. Sci. Eng. Res. 9, 927–930 (2014)

    Google Scholar 

  62. M.Z. Ahsan, F.A. Khan, M.A. Islam, Frequency and temperature dependent intrinsic electric properties of manganese doped cobalt ferrite nanoparticles. Results Phys. 14, 102484 (2019)

    Article  Google Scholar 

  63. A.A. Ati, Fast synthesis, structural, morphology with enhanced magnetic properties of cobalt doped nickel ferrite nanoscale. J. Mater. Sci. 29, 12010–12021 (2018)

    CAS  Google Scholar 

  64. S.A. Mazen, A.A. Yousif, M.E. Elzain, The effect of Ge4+ substitution in lithium ferrites. Phys. Status Solidi Appl. Res. 149, 685 (1995)

    Article  CAS  Google Scholar 

  65. M. Satalkar, S.N. Kane, On the study of structural properties and cation distribution of Zn0.75-xNixMg0.15Cu0.1Fe2O4nano ferrite: effect of Ni addition. J. Phys. 755, 012050 (2016)

    Google Scholar 

  66. R.L. Dhiman, S.P. Taneja, V.R. Reddy, Preparation and characterization of manganese ferrite aluminates. Adv. Condens. Matter Phys. 2008, 703479 (2008)

    Article  Google Scholar 

  67. D. Varshney, K. Verma, A. Kumar, Substitutional effect on structural and magnetic properties of AxCo1−xFe2O4 (A=Zn, Mg and x=0.0, 0.5) ferrites. J. Mol. Struct. 1006, 447–452 (2011)

    Article  CAS  Google Scholar 

  68. H. Anwar, A. Maqsood, I.H. Gul, Effect of synthesis on structural and magnetic properties of cobalt doped Mn–Zn nano ferrites. J. Alloy. Compd. 626, 410–414 (2015)

    Article  CAS  Google Scholar 

  69. A. Rais, K. Taibi, A. Addou, A. Zanoun, Y. Al-Douri, Copper substitution effect on the structural properties of nickel ferrites. Ceram. Int. 40, 14413–14419 (2014)

    Article  CAS  Google Scholar 

  70. M.S. Shah, K. Ali, I. Ali, A. Mahmood, S.M. Ramay, M.T. Farid, Structural and magnetic properties of praseodymium substituted barium-based spinel ferrites. Mater. Res. Bull. 98, 77–82 (2018)

    Article  CAS  Google Scholar 

  71. P. Kharazi, R. Rahimi, M. Rabbani, Copper ferrite-polyaniline nanocomposite: Structural, thermal, magnetic and dye adsorption properties. Solid State Sci. 93, 95–100 (2019)

    Article  CAS  Google Scholar 

  72. K. Jalaiah, K.V. Babu, K.R. Babu, V.V. Kumar, R.V. Krishnaiah, Co-dopant affect on the structural, electrical and magnetic properties of zirconium and copper co-substituted Ni075Zn0.25Fe2O4 spinel ferrites synthesized by sol-gel method. Chin. J. Phys. 56, 2039–2051 (2018)

    Article  CAS  Google Scholar 

  73. C. Stein, M. Bezerra, G. Holanda, J. André-Filho, P. Morais, Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures. AIP Adv. 8, 056303 (2018)

    Article  Google Scholar 

  74. G. Allaedini, S.M. Tasirin, P. Aminayi, Magnetic properties of cobalt ferrite synthesized by hydrothermal method. Int. Nano Lett. 5, 183–186 (2015)

    Article  CAS  Google Scholar 

  75. K. Kim, H. Kim, Y. Park, J. Park, Variation of the structural and the magnetic properties in Mn-doped CoFe2O4 thin films. J. Korean Phys. Soc. 49, 1024–1028 (2006)

    CAS  Google Scholar 

  76. C.H. Kim, Y. Myung, Y.J. Cho, H.S. Kim, S.-H. Park, J. Park, J.-Y. Kim, B. Kim, Electronic structure of vertically aligned Mn-doped CoFe2O4 nanowires and their application as humidity sensors and photodetectors. J. Phys. Chem. C 113, 7085–7090 (2009)

    Article  CAS  Google Scholar 

  77. A.B. Salunkhe, V.M. Khot, M.R. Phadatare, N.D. Thorat, R.S. Joshi, H.M. Yadav, S.H. Pawar, Low temperature combustion synthesis and magnetostructural properties of Co–Mn nanoferrites. J. Magn. Magn. Mater. 352, 91–98 (2014)

    Article  CAS  Google Scholar 

  78. R. Jabbar, S.H. Sabeeh, A.M. Hameed, Structural, dielectric and magnetic properties of Mn+2 doped cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 494, 165726 (2020)

    Article  CAS  Google Scholar 

  79. R. Kambale, P.A. Shaikh, N. Harale, V.A. Bilur, Y. Kolekar, C. Bhosale, K. Rajpure, Structural and magnetic properties of Co1−xMnxFe2O4 (0≤x≤0.4) spinel ferrites synthesized by combustion route. J. Alloys Compd. 490, 568–571 (2010)

    Article  CAS  Google Scholar 

  80. Q. Lin, J. Xu, F. Yang, J. Lin, H. Yang, Y. He, Magnetic and Mössbauer spectroscopy studies of zinc-substituted cobalt ferrites prepared by the sol-gel method. Materials (Basel) 11, 1799 (2018)

    Article  Google Scholar 

  81. M.Y. Chen, J. Xu, Z.Z. Li, Y. Zhang, W.H. Qi, G.D. Tang, Magnetic property and cation distributions in boron-doped MFe2O4(M = Ni, Mn) spinel ferrites. Results Phys. 14, 102389 (2019)

    Article  Google Scholar 

  82. L.L. Lang, J. Xu, W.H. Qi, Z. Li, G. Tang, Z.F. Shang, X.Y. Zhang, L. Wu, L.C. Xue, Study of cation magnetic moment directions in Cr (Co) doped nickel ferrites. J. Appl. Phys. 116, 123901–123901 (2014)

    Article  Google Scholar 

  83. S. Mallesh, V. Srinivas, A comprehensive study on thermal stability and magnetic properties of MnZn-ferrite nanoparticles. J. Magn. Magn. Mater. 475, 290–303 (2019)

    Article  CAS  Google Scholar 

  84. K.H. Maria, S. Choudhury, M.A. Hakim, Structural phase transformation and hysteresis behavior of Cu-Zn ferrites. Int. Nano Lett. 3, 42 (2013)

    Article  Google Scholar 

  85. Y. Li, R. Liu, Z. Zhang, C. Xiong, Synthesis and characterization of nanocrystalline BaFe9.6Co0.8Ti0.8M08O19 particles. Mater. Chem. Phys. 64, 256–259 (2000)

    Article  CAS  Google Scholar 

  86. S. Dabagh, A.A. Ati, R.M. Rosnan, S. Zare, Z. Othaman, Effect of Cu–Al substitution on the structural and magnetic properties of Co ferrites. Mater. Sci. Semicond. Process. 33, 1–8 (2015)

    Article  CAS  Google Scholar 

  87. M.N. Ashiq, F. Naz, M.A. Malana, R.S. Gohar, Z. Ahmad, Role of Co–Cr substitution on the structural, electrical and magnetic properties of nickel nano-ferrites synthesized by the chemical co-precipitation method. Mater. Res. Bull. 47, 683–686 (2012)

    Article  CAS  Google Scholar 

  88. M.N. Ashiq, R.B. Qureshi, M.A. Malana, M.F. Ehsan, Fabrication, structural, dielectric and magnetic properties of tantalum and potassium doped M-type strontium calcium hexaferrites. J. Alloy. Compd. 651, 266–272 (2015)

    Article  CAS  Google Scholar 

  89. M.I.A. Abdel Maksoud, A. El-ghandour, G.S. El-Sayyad, A.S. Awed, A.H. Ashour, A.I. El-Batal, M. Gobara, E.K. Abdel-Khalek, M.M. El-Okr, Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties. J. Sol-Gel Sci. Technol. 90, 631–642 (2019)

    Article  CAS  Google Scholar 

  90. R.C. Kambale, P.A. Shaikh, N.S. Harale, V.A. Bilur, Y.D. Kolekar, C.H. Bhosale, K.Y. Rajpure, Structural and magnetic properties of Co1−xMnxFe2O4 (0≤x≤0.4) spinel ferrites synthesized by combustion route. J. Alloys Compd. 490, 568–571 (2010)

    Article  CAS  Google Scholar 

  91. O. Caltun, G.S.N. Rao, K.H. Rao, B. Parvatheeswara Rao, I. Dumitru, C.-O. Kim, C. Kim, The influence of Mn doping level on magnetostriction coefficient of cobalt ferrite. J Magn Magn Mater 316, e618–e620 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Ati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ati, A.A., Abdalsalam, A.H. & Hasan, A.S. Thermal, microstructural and magnetic properties of manganese substitution cobalt ferrite prepared via co-precipitation method. J Mater Sci: Mater Electron 32, 3019–3037 (2021). https://doi.org/10.1007/s10854-020-05053-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05053-4

Navigation