Skip to main content
Log in

Magnetization in a Finite Superconducting Hollow Cylinder in the Presence of the Radial and Azimuthal Transport Currents

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The main aim of this study is to investigate the magnetization of a finite superconducting hollow cylinder in an axial applied magnetic field and in presence of different values of the radial and azimuthal transport currents in the framework of the three critical states models, namely, Bean, Kim, and exponential models. A set of self-consistency coupled-integral equations for the magnetization hysteresis loops have been solved by using Newton’s numerical method. Throughout the calculations, it has been assumed that the flux penetration starts from the inner lateral surface of the sample. A comparison has been made between the magnetic responses of the sample in applying the radial and azimuthal transport currents. It was found that when the transport current increases, the saturation value, enclosed area of the hysteresis loops, and the initial slopes in the virgin curve decreases. However, given that the flux penetration and demagnetizing effect did not affect by the azimuthal angle, the rate of the mentioned changes as the transport current is in azimuthal direction was slower than when that is in the radial direction. In addition, the radial transport current destroyed the azimuthal symmetry of the shielding current distribution and induced the nonuniform magnetic field in the finite sample. The obtained results have shown the importance of the magnetic field dependence of the critical current density on the magnetic response of the finite superconducting hollow cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zeldov, E., Clem, J.R., McElfresh, M., Darwin, M.: Phys. Rev. B49, 9802 (1994)

    Article  ADS  Google Scholar 

  2. Brandt, E.H.: Phys. Rev. B55, 14513 (1997)

    Article  ADS  Google Scholar 

  3. Johansen, T.H., Bratsberg, H.: J. Appl. Phys. 77, 3945 (1995)

    Article  ADS  Google Scholar 

  4. Brandt, EH.: Phys. Rev. B58, 6506 (1997)

    ADS  Google Scholar 

  5. Shehata, L.N., Refai, H.T.F.: Phys. Stat. Sol. 133, 707 (1986)

    Article  ADS  Google Scholar 

  6. Altshuler, E., Mulet, R.: Phys. C 292, 39 (1997)

    Article  ADS  Google Scholar 

  7. Fagnard, J.F., Denis, S., Lousberg, G., Dirickx, M., Ausloos, M., Vanderheyden, B., Vanderbemden, Ph.: IEEE Trans. Appl. Supercond. 19(3), 2905 (2009)

    Article  ADS  Google Scholar 

  8. Masale, M., Constantinou, N.C., Tilley, D.R.: Supercond. Sci. Technol. 8, 287 (1993)

    Article  ADS  Google Scholar 

  9. Yampolskii, S.V., Peeters, F.M., Baelus, B.J., Fink, H.J.: Phys. Rev. B64, 3945 (2001)

    Google Scholar 

  10. Douglass, D.H.: Phys. Rev. 132, 513 (1963)

    Article  ADS  MATH  Google Scholar 

  11. Altshuler, E., Mulet, R.: J. Supercond. 8, 779 (1995)

    Article  ADS  Google Scholar 

  12. Arutunian, R.M., Zharkov, G.F.: J. Low Temp. Phys. 52, 409 (1983)

    Article  ADS  Google Scholar 

  13. Arutyunyan, R.M., Ginzburg, V.L., Zharkov, G.F.: JETP 84, 1186 (1997)

    Article  ADS  Google Scholar 

  14. Lousberg, G.P., Ausloos, M., Geuzaine, Ch., Dular, P., Vanderbemden, Ph., Vanderheyden, B.: Supercond. Sci. Technol. 22, 055005 (2009)

    Article  ADS  Google Scholar 

  15. Fagnard, J.F., Dirickx, M., Ausloos, M., Lousberg, G., Vanderheyden, B., Vanderbemden, Ph.: Supercond. Sci. Technol 22, 105002 (2009)

    Article  ADS  Google Scholar 

  16. Fagnard, J.F., Elschner, S., Hobl, A., Bock, J., Vanderheyden, B., Vanderbemden, P.: Supercond. Sci. Technol. 25, 104006 (2012)

    Article  ADS  Google Scholar 

  17. Denis, S., Dirickx, M., Vanderbemden, Ph., Ausloos, M., Vanderheyden, B.: Supercond. Sci. Technol. 20, 418 (2007)

    Article  ADS  Google Scholar 

  18. Denis, S., Dusoulier, L., Dirickx, M., Vanderbemden, Ph., Cloots, R., Ausloos, M., Vanderheyden, B.: Supercond. Sci. Technol. 20, 192 (2007)

    Article  ADS  Google Scholar 

  19. Alqadi, M.K., Alzoubi, F.Y., Saadeh, S.M., AlKhateeb, H.M., Ayoub, N.Y.: J. Supercond. Nov. Magn. 25, 1469 (2012)

    Article  Google Scholar 

  20. Frankel, D.J.: IEEE Trans. Magn. 15(5), 1349 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  21. Holguin, E., Berger, H., Loude, J.F.: Solid State Commun. 74(4), 263 (1990)

    Article  ADS  Google Scholar 

  22. Altenburg, H., Plewa, J., Jaszczuk, W., Itoh, M., Brunets, I., Buev, A., Vilics, T.: Physica C Superconductivity 372–376, 1046 (2002)

    Article  Google Scholar 

  23. Hechtfischer, D.: Cryogenics 27, 503 (1987)

    Article  ADS  Google Scholar 

  24. Thomasson, J.W., Ginsberg, D.M.: Rev. Sci. Instrum. 47, 387 (1976)

    Article  ADS  Google Scholar 

  25. Mulet, R., Altshuler, E.: Phys. C 252, 295 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Batool Mohammadzadeh-Dehsorkh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh-Dehsorkh, B., Babaei-Brojeny, A. Magnetization in a Finite Superconducting Hollow Cylinder in the Presence of the Radial and Azimuthal Transport Currents. J Supercond Nov Magn 28, 1711–1717 (2015). https://doi.org/10.1007/s10948-015-2979-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-2979-8

Keywords

Navigation