Skip to main content
Log in

Analysis of mechanical behavior on anisotropic cylindrical superconducting materials with inclusions

含夹杂各向异性圆柱超导材料的力学行为分析

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper presents a theoretical and numerical analysis of the magnetoelasticity of a long cylindrical superconductor model containing a central inclusion placed in a time-dependent external magnetic field with zero-field-cooled magnetization (ZFC). In order to reflect the mechanical behavior of the model more realistically, the model is defined as a material with anisotropic mechanical properties, and then the viscous flux flow effect and the flux creep effect are considered separately for the flux distribution of the model. By controlling the elastic modulus E ir /E mr , volume fraction f of composite materials, as well as the parameters affecting the flux distribution, such as the viscous flux flow velocity v1, the flux creep action coefficient K, the creep occurrence probability n, etc., the radial stress distribution and magnetostriction characteristics of the model are analyzed in depth. In this paper, the theoretical calculation results are compared with the numerical simulation results. The results show that the distribution laws of the parametric curves plotted by the two are almost completely consistent, but there are obvious differences in the numerical values. The reason is that the superconductor conductivity is assumed to satisfy a strong nonlinear E-J relationship in the numerical simulation process, and an external magnetic field in the form of a pulse is applied; while the field-dependent critical state model is used in the theoretical calculation, and the induced current is assumed to be a critical current, so there are certain differences in the calculated values.

摘要

本文对零场冷却充磁(ZFC)后放置于随时间变化的外磁场中的含中心夹杂长圆柱超导体模型磁弹性问题进行解析计算和数值计算分析. 为了更加真实地反映模型的力学行为, 首先将模型定义为磁性能各向异性材料, 其次对模型的磁通分布状态分别考虑了外场黏性磁通流动效应和内场磁通蠕变效应. 通过控制复合材料的弹性模量E ir /E mr 、体积分数f 等弹性系数以及影响磁通分布的黏性磁通流动速度v1 、磁通蠕变作用系数K、蠕变发生几率n等参变量的取值, 对模型的径向应力分布状态和磁致伸缩特性进行深入分析.将本文的解析计算结果与数值模拟结果进行了比较, 结果反映两者绘制的参变量曲线分布规律几乎完全吻合, 不同的是数值大小存在明显差异, 其原因为数值模拟过程中假定超导体电导率满足强非线性E-J关系, 并施加了脉冲形式的外磁场; 而解析计算过程中采用了场相关的临界态模型, 将感应电流假定为临界电流, 所以导致计算结果数值存在一定差异.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hamrita, F. Ben Azzouz, W. Dachraoui, and M. Ben Salem, The effect of silver inclusion on superconducting properties of YBa2Cu3Oy prepared using planetary ball milling, J. Supercond. Nov. Magn. 26, 879 (2013).

    Article  Google Scholar 

  2. X. M. Cui, B. W. Tao, J. Xiong, X. Z. Liu, J. Zhu, and Y. R. Li, Effect of annealing time on the structure and properties of YBCO films by the TFA-MOD method, Phys. C-Supercond. 432, 147 (2005).

    Article  Google Scholar 

  3. L. Ceniga, and P. Diko, Matrix crack formation in Y-Ba-Cu-O superconductor, Phys. C-Supercond. 385, 329 (2003).

    Article  Google Scholar 

  4. X. Wang, H. Yong, C. Xue, and Y. Zhou, Inclined crack problem in a rectangular slab of superconductor under an electromagnetic force, J. Appl. Phys. 114, 083901 (2013).

    Article  Google Scholar 

  5. W. J. Feng, Q. F. Liu, and X. Han, Crack problem for a functionally graded thin superconducting film with field dependent critical currents, Mech. Res. Commun. 61, 36 (2014).

    Article  Google Scholar 

  6. W. J. Feng, S. W. Gao, and L. L. Liu, Fracture properties of a cylindrical superconductor with a central cross crack, J. Appl. Phys. 113, 203919 (2013).

    Article  Google Scholar 

  7. A. He, C. Xue, H. Yong, and Y. Zhou, Fracture behaviors of thin superconducting films with field-dependent critical current density, Phys. C-Supercond. 492, 25 (2013).

    Article  Google Scholar 

  8. C. Xue, A. He, H. Yong, and Y. Zhou, Crack tip opening displacement in a linear strain hardening material, Mech. Mater. 66, 21 (2013).

    Article  Google Scholar 

  9. M. Murakami, S. Gotoh, H. Fujimoto, K. Yamaguchi, N. Koshizuka, and S. Tanaka, Flux pinning and critical currents in melt processed YBaCuO superconductors, Supercond. Sci. Tech. 4, 43 (1991).

    Article  Google Scholar 

  10. M. G. Blamire, R. B. Dinner, S. C. Wimbush, and J. L. MacManus-Driscoll, Critical current enhancement by Lorentz force reduction in superconductor-ferromagnet nanocomposites, Supercond. Sci. Technol. 22, 025017 (2009).

    Article  Google Scholar 

  11. Y. Yang, and X. Wang, Stress and magnetostriction in an infinite hollow superconducting cylinder with a filling in its central hole, Phys. C-Supercond. 485, 58 (2013).

    Article  Google Scholar 

  12. Y. Yang, and X. Wang, Magnetization and magnetoelastic behavior of a functionally graded rectangular superconductor slab, J. Appl. Phys. 116, 023901 (2014).

    Article  Google Scholar 

  13. Z. Gao, and Y. Zhou, A magneto-mechanical fully coupled model for giant magnetostriction in high temperature superconductor, Acta Mech. Solid Sin. 28, 353 (2015).

    Article  Google Scholar 

  14. C. Huang, H. Yong, and Y. Zhou, Effect of magnetic nanoparticles on the mechanical properties of type-ii superconductors, Acta Mech. Solid Sin. 27, 65 (2014).

    Article  Google Scholar 

  15. F. Xue, Z. Zhang, J. Zeng, and X. Gou, Effect of an elliptical inclusion on critical current density of a long cylindrical high-Tc superconductor, J. Supercond. Nov. Magn. 29, 2023 (2016).

    Article  Google Scholar 

  16. F. Xue, and X. Gou, Crack problem for a bulk superconductor with nonsuperconducting inclusions under an electromagnetic force, AIP Adv. 5, 047128 (2015).

    Article  Google Scholar 

  17. H. D. Yong, and Y. H. Zhou, Effect of nonsuperconducting particles on the effective magnetostriction of bulk superconductors, J. Appl. Phys. 104, 043907 (2008).

    Article  Google Scholar 

  18. Y. Zhao, and B. Pan, 3D modeling effect of spherical inclusions on the magnetostriction of bulk superconductors, J. Low Temp. Phys. 190, 213 (2018).

    Article  Google Scholar 

  19. F. Xue, H. D. Yong, and Y. H. Zhou, Effect of flux creep and viscous flux flow on flux-pinning-induced stress and magnetostriction in a long rectangular slab superconductor, J. Appl. Phys. 108, 103910 (2010).

    Article  Google Scholar 

  20. Y. F. Zhao, and K. Xiong, Magnetization and stress in superconducting film under electromagnetic force with viscous flux flow, Mod. Phys. Lett. B 205, 0283 (2020).

    MathSciNet  Google Scholar 

  21. Y. Yang, and X. Zheng, Radial and hoop compressive stresses in a long cylindrical superconductor with viscous flux flow, J. Supercond. Nov. Magn. 28, 2255 (2015).

    Article  Google Scholar 

  22. P. H. Melville, Effect of viscous forces in type II superconductors under A.C. conditions, Phys. Lett. A 39, 373 (1972).

    Article  Google Scholar 

  23. W. Zhou, Y. Zhou, and J. Hou, Stress analysis of cylindrical superconductors based on viscous flux flow and flux creep in the demagnetization process after ZFC, J. Supercond. Nov. Magn. 34, 2293 (2021).

    Article  Google Scholar 

  24. T. H. Johansen, C. Wang, Q. Y. Chen, and W. K. Chu, Enhancement of tensile stress near a hole in superconducting trapped-field magnets, J. Appl. Phys. 88, 2730 (2000).

    Article  Google Scholar 

  25. Y. Zhao, Z. Liu, and K. Xiong, Effect of inclusions on magnetostriction in superconducting cylinder with exponential distribution of critical-current density, J. Supercond. Nov. Magn. 32, 1199 (2019).

    Article  Google Scholar 

  26. Y. Zhao, and B. Shi, Influence of non-superconducting inclusions on magnetostriction of bulk superconductors with viscous flux flow under zero-field cooling process, J. Low Temp. Phys. 198, 269 (2020).

    Article  Google Scholar 

  27. C. Xue, A. He, H. Yong, and Y. Zhou, Magneto-elastic behaviour of thin type-II superconducting strip with field-dependent critical current, J. Appl. Phys. 113, 023901 (2013).

    Article  Google Scholar 

  28. E. Berrospe-Juarez, F. Trillaud, V. M. R. Zermeño, and F. Grilli, Advanced electromagnetic modeling of large-scale high-temperature superconductor systems based on H and T-A formulations, Supercond. Sci. Technol. 34, 044002 (2021).

    Article  Google Scholar 

  29. Z. Jiang, D. Jiang, X. Wu, W. Chen, and G. Kuang, Numerical research of potential methods to reduce screening-current-induced stress for no-insulation REBCO coils, IEEE Trans. Appl. Supercond. 32, 1 (2022).

    Article  Google Scholar 

  30. Q. F. Liu, W. J. Feng, and J. Y. Liu, Flux-pinning-induced stress behaviors in a long superconducting slab with central cuboid hole, Acta Mech. Sin. 37, 1255 (2021).

    Article  MathSciNet  Google Scholar 

  31. M. Niu, H. Yong, and Y. Zhou, 3D modelling of coupled electromagnetic-mechanical responses in REBCO coils involving tape inhomogeneity, Supercond. Sci. Technol. 35, 054009 (2022).

    Article  Google Scholar 

  32. H. Ueda, Y. Awazu, K. Tokunaga, and S. B. Kim, Numerical evaluation of the deformation of REBCO pancake coil, considering winding tension, thermal stress, and screening-current-induced stress, Supercond. Sci. Technol. 34, 024003 (2021).

    Article  Google Scholar 

  33. Y. Yang, and X. Chai, Viscous flux flow velocity and stress distribution in the Kim model of a long rectangular slab superconductor, Supercond. Sci. Technol. 31, 055005 (2018).

    Article  Google Scholar 

  34. N. Sakai, A. Mase, H. Ikuta, S. J. Seo, U. Mizutani, and M. Murakami, Mechanical properties of Sm-Ba-Cu-O/Ag bulk superconductors, Supercond. Sci. Technol. 13, 770 (2000).

    Article  Google Scholar 

  35. T. H. Johansen, Flux-pinning-induced stress and strain in superconductors: Case of a long circular cylinder, Phys. Rev. B 60, 9690 (1999).

    Article  Google Scholar 

  36. Y. Yang, Corrigendum: Impact of viscous flux flow on the stresses in long cylindrical superconductors, Supercond. Sci. Technol. 27, 059501 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51904138 and 51076061), and the Natural Science Foundation of Gansu Province (Grant No. B061709). The authors are also grateful to the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenhai Zhou  (周文海) or Youhe Zhou  (周又和).

Additional information

Author contributions

Zhou Youhe designed the study and put forward the overall research objectives, methods and research ideas. Zhou Wenhai modeled the research content, analyzed the data and detailed writing process to form the first draft. On this basis, the first draft was reviewed and revised, and put forward constructive suggestions. In the end, Zhou Wenhai revised the article several times according to Zhou Youhe’s opinions and formed the final draft.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Zhou, Y. Analysis of mechanical behavior on anisotropic cylindrical superconducting materials with inclusions. Acta Mech. Sin. 39, 122168 (2023). https://doi.org/10.1007/s10409-022-22168-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22168-x

Navigation