Skip to main content
Log in

The Splitting of SDW State into Commensurable and Incommensurables Ones and the Peculiarities of the Behavior of Thermodynamic Quantities in a Magnetic Field Arbitrarily Oriented to Magnetization in Quasi Two-Dimensional Systems

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The quasi-two-dimensional system in which magnetism is caused by spin density wave (SDW) with an anisotropic energy spectrum (with defined impurity concentration x) is examined. The wave vector \(\vec{Q}\) is supposed to be different from 2k F and the umklapp scattering (U-processes) is taken into account. The system is placed in a magnetic field arbitrarily oriented with respect to the vector \(\vec{M}_{Q}\). The basic equations for order parameters \(M_{Q}^{z}, M_{Q}', M_{z}, M^{\sigma}\) are obtained and the system of these equations is transformed taking into account the U-processes. The particular cases \(( \tilde{H} \Vert \vec{M}_{Q} )\) and \(( \tilde{H} \bot \vec{M}_{Q} )\) and the case of small arbitrarily oriented magnetic fields \(\vec{\tilde{H}}\) are examined in detail. The conditions of the system transition to commensurable and incommensurable SDW state are analyzed. The phase diagram (T,x) at H=0 is traced. The influence of the magnetic field \(\vec{\tilde{H}}\) on the temperature of magnetic transition is researched and the aspect of the phase diagram in magnetic field in the cases H z H σ=0 is presented. The longitudinal magnetic susceptibility χ which demonstrates that at x<x c the temperature behavior is similar to the case when the system has a gap, and at x>x c to a gapless case. At xx c in the dependence X (T) a local maximum appears. The influence of the energy spectrum anisotropy on the system’s properties is researched. Also the angular anisotropy of the quantity χ at different values of T and x is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhu, X., Vang, H., Fang, L., et al.: Supercond. Sci. Technol. 21, 105001 (2008)

    Article  ADS  Google Scholar 

  2. Rodriguez, E.E., Stock, C., Krycka, K., et al.: Phys. Rev. B, Solid State 83, 134438 (2011). arXiv:1012.5311

    Article  ADS  Google Scholar 

  3. Hu, J., Xu, B., Liu, W., et al.: Phys. Rev. B 85, 144403 (2012). arXiv:1106.5169

    Article  ADS  Google Scholar 

  4. Timirov, P.H.: Zh. Eksp. Teor. Fiz. 72(6), 2309 (1977)

    Google Scholar 

  5. Leung, M.C.: Phys. Rev. B 11, 4272 (1975)

    Article  ADS  Google Scholar 

  6. Palistrant, M.E., Padure, I.V.: Phys. Lett. A 111 (8–9, 445–447 (1985)

    Article  Google Scholar 

  7. Palistrant, M.E., Padure, I.V.: Theor. Mat. Phys. 62(1), 117 (1985)

    Article  Google Scholar 

  8. Palistrant, M.E., Vakalyuk, V.M.: Phys. Low Temp. 18, 847 (1992)

    Google Scholar 

  9. Kopaev, Y.A.: Some questions of superconductivity vol. 86, p. 3. Nauka, Moscow (1975)

    Google Scholar 

  10. Palistrant, M.E., Kochorbe, F.G.: News Acad. Sci. Sov. Soc. Rep. Mold. Phys. Equip. 2(5), 7 (1991)

    Google Scholar 

  11. Digor, D.F., Palistrant, M.E.: Mold. J. Phys. Sci. 9(3–4), 311 (2010)

    Google Scholar 

  12. Gradshtein, I.S., Ryjik, I.M.: Tables of integrals, sums, ranks, and works. Moscow (1962)

  13. Palistrant, M.E.: Theor. Math. Phys. 168(3), 1290 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Palistrant.

Appendix

Appendix

Here the results of transformation of system of equations (3)–(6) are given taking into account the transfer processes.

The system of equations for order parameter \(\vec{M}_{Q}\) and spontaneous magnetization \(\vec{M}\) at an arbitrary direction of magnetic field to magnetization and taking into account the U-processes has the form

$$\begin{aligned} M_{Q}^{Z} =&g \sum_{\alpha, \beta} \int _{- \tilde{W}}^{\tilde{W}} N ( \varepsilon )\, d \varepsilon \biggl[ M_{Q}^{Z} I_{1} \bigl( \varepsilon, M_{Q}, \tilde{H}, \mu_{\beta}^{\alpha} \bigr) \\ &{} + \sum_{\sigma} M_{Q}^{\sigma} \tilde{H}_{Z} \tilde{H}^{-\sigma} \mathcal{I}_{1} \bigl( \varepsilon, M_{Q}, \tilde{H}, \mu_{\beta}^{\alpha} \bigr) \biggr], \end{aligned}$$
(44)
$$\begin{aligned} M_{Q}^{\sigma} =&g \sum_{\alpha, \beta} \int _{- \tilde{W}}^{\tilde{W}} N ( \varepsilon ) \,d \varepsilon \bigl[ M_{Q} I_{2} \bigl( \varepsilon, M_{Q}, \tilde{H}, \mu_{\beta}^{\alpha} \bigr) \\ &{}+ \tilde{H}^{\sigma} \bigl[ 2 \tilde{H}_{Z} M_{Q}^{Z} + M_{Q}^{-\sigma} \tilde{H}^{\sigma} \bigr] \mathcal{I}_{1} \bigl( \varepsilon, M_{Q}, \tilde{H}, \mu_{\beta}^{\alpha} \bigr) \bigr], \end{aligned}$$
(45)
$$\begin{aligned} M_{Z} =&g \sum_{\alpha, \beta} \int _{- \tilde{W}}^{\tilde{W}} N ( \varepsilon ) \,d \varepsilon \biggl[ \tilde{H}_{Z} I_{3} \bigl( \varepsilon, M_{Q}, \tilde{H}, \mu_{\beta}^{\alpha} \bigr) \\ &{}+ \sum _{\sigma} M_{Q}^{Z} M_{Q}^{\sigma} \tilde{H}^{-\sigma} \mathcal{I}_{1} \bigl( \varepsilon, M_{Q}, \tilde{H}, \mu_{\beta}^{\alpha} \bigr) \biggr], \end{aligned}$$
(46)
$$\begin{aligned} M^{\sigma} =&g \sum_{\alpha, \beta} \int _{- \tilde{W}}^{\tilde{W}} N ( \varepsilon ) \,d \varepsilon \bigl[ \tilde{H}^{\sigma} I_{4} \bigl( \varepsilon, M_{Q}, \tilde{H}, \mu_{\beta}^{\alpha} \bigr) \\ &{} + M_{Q}^{\sigma} \bigl[ 2 \tilde{H}_{Z} M_{Q}^{Z} + M_{Q}^{\sigma} \tilde{H}^{\sigma} \bigr] \mathcal{I}_{1} \bigl( \varepsilon, M_{Q}, \tilde{H}, \mu_{\beta}^{\alpha} \bigr) \bigr], \end{aligned}$$
(47)
$$\begin{aligned} x =&2 N_{0} \sum_{\alpha\beta \sigma ' \sigma^{\prime\prime}} \int _{0}^{\tilde{W}} \frac{N ( \varepsilon )}{N_{0}} \biggl\{ \frac{th \frac{\beta ( \tilde{\varphi}_{\sigma ' \sigma^{\prime\prime}} - \mu_{\alpha\beta} )}{2}}{2 \tilde{\varphi}_{\sigma ' \sigma^{\prime\prime}} \tilde{H} A_{k}} \\ &{}\times \bigl[ ( \varepsilon+ \tilde{\varphi}_{\sigma ' \sigma^{\prime\prime}} ) \bigl( \tilde{H}^{2} + \sigma^{\prime\prime} \tilde{H} A_{k} -\sigma \tilde{H}_{Z} ( \varepsilon+ \tilde{\varphi}_{\sigma ' \sigma^{\prime\prime}} ) \bigr) \\ &{} + ( \varepsilon- \tilde{\varphi}_{\sigma ' \sigma^{\prime\prime}} ) \tilde{H}^{2} + \tilde{\psi} \bigr] \\ &{}- \frac{\mathit{th} \frac{\beta ( \tilde{\varphi} '_{\sigma ' \sigma^{\prime\prime}} + \mu_{\alpha\beta} )}{2}}{2 \tilde{\varphi} '_{\sigma ' \sigma^{\prime\prime}} \tilde{H} A_{k}} [ \bigl( -\varepsilon+ \tilde{\varphi} '_{\sigma ' \sigma^{\prime\prime}} \bigr) \bigl( \tilde{H}^{2} + \sigma^{\prime\prime} \tilde{H} A_{k} \\ &{} -\sigma \tilde{H}_{Z} \bigl( -\varepsilon+ \tilde{\varphi} '_{\sigma ' \sigma^{\prime\prime}} \bigr) \bigr) + \bigl( -\varepsilon+ \tilde{\varphi} '_{\sigma ' \sigma^{\prime\prime}} \bigr) \tilde{H}^{2} + \tilde{\psi} \biggr\} \,d\varepsilon. \end{aligned}$$
(48)

Also we have

$$\begin{aligned} &{I_{1} \bigl( \varepsilon, M_{Q}, \tilde{H}, \mu_{\beta}^{\alpha} \bigr)} \\ &{\quad = \frac{1}{8 \tilde{H} A ( \varepsilon )} \sum _{\sigma ', \sigma ''} \sigma ' \sigma^{\prime\prime} \frac{2 \tilde{H}_{Z}^{2} - \sigma^{\prime\prime} \tilde{H} A ( \varepsilon )}{\xi_{\sigma ''} ( \varepsilon )} \mathit{th} \frac{E_{\alpha \sigma ' \sigma^{\prime\prime}}^{\beta}}{2 T},} \\ &{\mathcal{I}_{1} \bigl( \varepsilon, M_{Q}, \tilde{H}, \mu_{\beta}^{\alpha} \bigr)} \\ &{\quad = \frac{1}{8 \tilde{H} A ( \varepsilon )} \sum _{\sigma ', \sigma ''} \sigma ' \sigma^{\prime\prime} \frac{1}{\xi_{\sigma ''} ( \varepsilon )} \mathit{th} \frac{E_{\alpha \sigma ' \sigma^{\prime\prime}}^{\beta}}{2 T},} \\ &{I_{2} \bigl( \varepsilon, M_{Q}, \tilde{H}, \mu_{\beta}^{\alpha} \bigr)} \\ &{\quad = \frac{1}{8 \tilde{H} A ( \varepsilon )} \sum _{\sigma ', \sigma ''} \sigma ' \sigma^{\prime\prime} \frac{\eta_{\sigma ' \sigma^{\prime\prime}} ( \varepsilon )}{\xi_{\sigma ''} ( \varepsilon )} \mathit{th} \frac{E_{\alpha \sigma ' \sigma^{\prime\prime}}^{\beta}}{2 T},} \end{aligned}$$
(49)
$$\begin{aligned} &{I_{3} \bigl( \varepsilon, M_{Q}, \tilde{H}, \mu_{\beta}^{\alpha} \bigr)} \\ &{\quad = \frac{1}{8 \tilde{H} A ( \varepsilon )} \sum _{\sigma ', \sigma ''} \sigma ' \sigma^{\prime\prime} \frac{\varphi_{\sigma ' \sigma^{\prime\prime}} ( \varepsilon )}{\xi_{\sigma ''} ( \varepsilon )} \mathit{th} \frac{E_{\alpha \sigma ' \sigma^{\prime\prime}}^{\beta}}{2 T},} \\ &{I_{4} \bigl( \varepsilon, M_{Q}, \tilde{H}, \mu_{\beta}^{\alpha} \bigr)} \\ &{\quad= \frac{1}{8 \tilde{H} A ( \varepsilon )} \sum _{\sigma ', \sigma ''} \sigma ' \sigma^{\prime\prime} \frac{\psi_{\sigma ' \sigma^{\prime\prime}} ( \varepsilon )}{\xi_{\sigma ''} ( \varepsilon )} \mathit{th} \frac{E_{\alpha \sigma ' \sigma^{\prime\prime}}^{\beta}}{2 T},} \\ &{\eta_{\sigma ' \sigma^{\prime\prime}} ( \varepsilon ) = \frac{1}{4} \bigl[ \bigl( \xi_{\sigma ''} ( \varepsilon ) \bigr)^{2} - 4 \varepsilon^{2} \bigr] - M_{Q}^{2} - \tilde{H}_{Z}^{2},} \\ &{\varphi_{\sigma ' \sigma^{\prime\prime}} ( \varepsilon ) = \frac{1}{4} \bigl[ 2\varepsilon- \sigma ' \xi_{\sigma ''} ( \varepsilon ) \bigr]^{2} - \tilde{H}^{2} + \bigl( M_{Q}^{Z} \bigr)^{2} - \vert M_{Q}^{\sigma} \vert^{2},} \end{aligned}$$
(50)
$$\begin{aligned} &{\psi_{\sigma ' \sigma^{\prime\prime}} ( \varepsilon ) = \frac{1}{4} \bigl[ 2\varepsilon- \sigma ' \xi_{\sigma ''} ( \varepsilon ) \bigr]^{2} - \tilde{H}^{2} - \bigl( M_{Q}^{Z} \bigr)^{2},} \\ &{A ( \varepsilon ) =2 \bigl[ M_{Q}^{2} \cos^{2} \psi + \varepsilon^{2} \bigr]^{{1} / {2}},} \\ &{\xi_{\sigma^{\prime\prime}} ( \varepsilon ) = \bigl[ \bigl( A ( \varepsilon ) - 2 \sigma^{\prime\prime} \tilde{H} \bigr) +4 M_{Q}^{2} \sin^{2} \psi \bigr]^{{1} / {2}},} \end{aligned}$$
(51)
$$\begin{aligned} &{E_{\alpha \sigma ' \sigma^{\prime\prime}}^{\beta} = - \mu_{\beta}^{\alpha} - \frac{1}{ 2} \sigma ' \xi_{\sigma^{\prime\prime}} ( \varepsilon ),} \\ &{\mu_{\beta}^{\alpha} =\mu+\alpha \frac{w_{1} q_{x}}{2} +\beta \frac{w_{2} q_{y}}{2},} \\ &{\tilde{\varphi}_{\sigma ' \sigma^{\prime\prime}} =2 \sqrt{\tilde{H}^{2} + M_{Q}^{2} + \tilde{H} A_{k} + \varepsilon^{2}}, }\\ &{\tilde{\varphi} '_{\sigma ' \sigma^{\prime\prime}} =2 \sqrt {\tilde{H}^{2} + M_{Q}^{2} - \tilde{H} A_{k} + \varepsilon^{2}}} \\ &{\tilde{\psi} = \sigma \tilde{H}_{z} \bigl( \tilde{H}_{z}^{2} - M_{Q}^{z^ 2} \bigr) + \sigma \tilde{H}_{z} \bigl( | M_{Q}^{\sigma} |^{2} +| H^{\sigma} |^{2} \bigr)} \\ &{\phantom{\tilde{\psi} =}{} - \sigma M_{Q}^{z} \sum _{\sigma ' = \sigma, - \sigma} M_{Q}^{\sigma '} \tilde{H}^{- \sigma '}.} \end{aligned}$$
(52)

The summation over α,β=±1 is determined by the consideration of normal and transfer processes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palistrant, M.E., Ursu, V.A. & Calalb, M. The Splitting of SDW State into Commensurable and Incommensurables Ones and the Peculiarities of the Behavior of Thermodynamic Quantities in a Magnetic Field Arbitrarily Oriented to Magnetization in Quasi Two-Dimensional Systems. J Supercond Nov Magn 27, 1299–1308 (2014). https://doi.org/10.1007/s10948-013-2431-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2431-x

Keywords

Navigation