Skip to main content
Log in

Euclidian Crystals in Many-Body Systems: Breakdown of Goldstone’s Theorem

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

It is proven via modification of the Nambu–Goldstone theorem, based on the Ward–Takahashi identity that Goldstone’s bosons of the quantum order could be massive. The quantum order parameter (QOP), introduced previously as the instantonic crystal in Euclidian space (Mukhin, J. Supercond. Nov. Magn. 24:1165–1171, 2011), breaks Matsubara’s time translational invariance while possessing zero classical expectation value and vanishing scattering cross-section (“hidden order”). The amplitude of the mass-gap can be calculated from the eigenmodes spectrum of the effective Euclidian action for a particular self-consistent QOP solution in the fermionic repulsive Hubbard model. Theoretical results are discussed in relation with possible linking together of the two phenomena that previously were considered separately, i.e., “hidden order” fingerprints in ARPES measurements and the “neutron resonance” feature in the magnetic spectrum in lightly hole-doped copper oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amit, D.J.: Field Theory, the Renormalization Group, and Critical Phenomena. World Scientific, Singapore (1978)

    Google Scholar 

  2. Mukhin, S.I.: J. Supercond. Nov. Magn. 24, 1165–1171 (2011)

    Article  Google Scholar 

  3. Timusk, T., Statt, B.: Rep. Prog. Phys. 62, 61–122 (1999)

    Article  ADS  Google Scholar 

  4. Damascelli, A., Hussain, Z., Shen, Z.-X.: Rev. Mod. Phys. 75, 473–541 (2003)

    Article  ADS  Google Scholar 

  5. Dai, P., Mook, H.A., Aeppli, G., Hayden, S.M., Dogan, F.: Nature 406, 965–967 (2000)

    Article  ADS  Google Scholar 

  6. Zaanen, J.: Nature 471, 314–316 (2011)

    Article  ADS  Google Scholar 

  7. Boothroyd, A.T., Babkevich, P., Prabhakaran, D., Freeman, P.G.: Nature 471, 341–344 (2011)

    Article  ADS  Google Scholar 

  8. Tchernyshyov, O., Norman, M.R., Chubukov, A.V.: Phys. Rev. B 63, 144507 (2001)

    Article  ADS  Google Scholar 

  9. Mukhin, S.I., Galimzyanov, T.R.: Physica B 407, 1882–1884 (2012)

    Article  ADS  Google Scholar 

  10. Hertz, J.A.: Phys. Rev. B 14, 1165 (1976)

    Article  ADS  Google Scholar 

  11. Weiss, P.: Comptes Rendus 143, 1136–1149 (1906)

    Google Scholar 

  12. Dashen, R.G., Hasslacher, B., Neveu, A.: Phys. Rev. D 12, 2443 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  13. Mukhin, S.I., Fistul, M.V.: Supercond. Sci. Technol. J. 26, 084003 (2013)

    Article  ADS  Google Scholar 

  14. Fradkin, E.: Field Theories of Condensed Matter Systems. Addison-Wesley, Reading (1991)

    MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges useful discussions with Professor Jan Zaanen and Dr. Michail Fistul, as well as partial support of this work by the Russian Ministry of Science and Education grant no. 14A18.21.1936, MISIS grant 3400022, and RFFI grant 12-02-01018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Mukhin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhin, S.I. Euclidian Crystals in Many-Body Systems: Breakdown of Goldstone’s Theorem. J Supercond Nov Magn 27, 945–950 (2014). https://doi.org/10.1007/s10948-013-2416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2416-9

Keywords

Navigation