Skip to main content
Log in

Flux Pinning in YBCO Single Crystal Grown on Y2O3 Layer

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this study, single-crystal Y123 samples were grown by a cold top-seeding method by using Nd123 seed, and the effect of Y2O3 buffer layer was investigated. The upper critical magnetic field and coherence length were established as 110 T and 17.3 Ǻ, respectively. The dependence of the effective activation energy U of the flux pinning on the magnetic field and temperature of the sample were determined using the Arrhenius activation energy law from the resistivity curves. It was found that the deduced value of the activation energy for a Y123 sample is in good agreement with the corresponding values in YBCO samples. The maximum activation energy value was approximately 0.9 eV in the zero magnetic field. In order to examine the homogeneity of the pinning properties of different layers, rectangular specimens were cut from the sample. AC susceptibility measurement was performed, and it was found that the shifting of the peak temperature (T p) with an AC magnetic field is small, indicating good pinning properties. The normalized pinning force density versus the reduced field was examined at different temperatures to determine the pinning mechanism. It was found that normal core-type pinning was effective, and in low fields, pinning was only due to Y211 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ullrich, M., Walter, H., Leenders, A., Freyhardt, H.C.: Physica C 311, 86–92 (1999)

    Article  ADS  Google Scholar 

  2. Cloots, R., Koutzarova, T., Mathieu, J.-P., Ausloos, M.: Supercond. Sci. Technol. 18, R9–R23 (2005)

    Article  ADS  Google Scholar 

  3. Ren, H.T., Xiao, L., Jiao, Y.L., Zheng, M.H.: Physica C 412–414, 597–601 (2004)

    Article  Google Scholar 

  4. Delamare, M.P., Walter, H., Bringmann, B., Leenders, A., Freyhardt, H.C.: Physica C 329, 160–177 (2000)

    Article  ADS  Google Scholar 

  5. Campbell, T.A., Haugan, T.J., Maartense, I., Murphy, J., Brunke, L., Barnes, P.N.: Physica C 423, 1–8 (2005)

    Article  ADS  Google Scholar 

  6. Hasegawa, M., Yoshida, Y., Iwata, M., Ishizawa, K., Takai, Y., Hirabayashi, I.: Physica C 336, 295–299 (2000)

    Article  ADS  Google Scholar 

  7. Aydıner, A., Çakır, B., Seki, H., Başoğlu, M., Wongsatanawarid, A., Murakami, M., Yanmaz, E.: J. Supercond. Nov. Magn. 24, 1397–1401 (2011)

    Article  Google Scholar 

  8. Giovannelli, F., Monot-Laffez, I.: Supercond. Sci. Technol. 15, 1193–1198 (2002)

    Article  ADS  Google Scholar 

  9. Welp, U., Kwok, W.K., Crabtree, G.W., Vandervoort, K.G., Liu, J.Z.: Phys. Rev. Lett. 62(16), 1908–1911 (1989)

    Article  ADS  Google Scholar 

  10. Gantmakher, V.F., Emel’chenko, G.A., Naumenko, I.G., Tsydynzhapov, G.E.: JETP Lett. 72(1), 21–25 (2000)

    Article  ADS  Google Scholar 

  11. Yeshurun, Y., Malozemoff, A.P.: Phys. Rev. Lett. 60(21), 2202–2205 (1988)

    Article  ADS  Google Scholar 

  12. Zou, X.W., Wang, Z.H., Chen, J.L., Zhang, H.: Physica C 356, 31–38 (2001)

    Article  ADS  Google Scholar 

  13. Dew-Huges, D.: Philos. Mag. 30(2), 293–305 (1974)

    Article  ADS  Google Scholar 

  14. Griessen, R., Hai-Hu, W., Van Dalen, A.J.J., Dam, B., Rector, J., Schnack, H.G.: Phys. Rev. Lett. 72(12), 1910–1913 (1994)

    Article  ADS  Google Scholar 

  15. Kim, G.C., Kim, B.J., Cheon, M.Y., Kim, Y.C.: Physica C 391, 305–308 (2003)

    Article  ADS  Google Scholar 

  16. Çakır, B., Aydıner, A.: J. Supercond. Nov. Magn. 24, 1577–1584 (2011)

    Article  Google Scholar 

  17. Aydıner, A., Çakır, B., Başoğlu, M., Seki, H., Wongsatanawarid, A., Murakami, M., Yanmaz, E.: J. Supercond. Nov. Magn. 25(2), 391–397 (2012)

    Article  Google Scholar 

  18. Ando, Y., Boebinger, G.S., Passner, A., Schneemeyer, L.F., Kimura, T., Okuya, M., Watauchi, S., Shimoyama, J., Kishio, K., Tamasaku, K., Ichikawa, N., Uchida, S.: Phys. Rev. B 60(17), 12475–12479 (1999)

    Article  ADS  Google Scholar 

  19. Çelik, Ş., Öztürk, K., Yanma, Z.E.: J. Phys. Conf. Ser. 153, 012007 (2009)

    Article  ADS  Google Scholar 

  20. Sekitani, T., Miuraa, N., Ikeda, S., Matsuda, Y.H., Shiohara, Y.: Physica B 346–347, 319–324 (2004)

    Article  Google Scholar 

  21. Okram, G.S., Aokia, H., Nakamura, K.: Solid State Commun. 110, 327–331 (1999)

    Article  ADS  Google Scholar 

  22. Lan, M.D., Liu, J.Z., Jia, Y.X., Zhang, L., Nagata, Y., Klavins, P., Shelton, R.N.: Phys. Rev. B 47(1), 457–462 (1993)

    Article  ADS  Google Scholar 

  23. Wen, H.-H.: Adv. Mater. (2008). doi:10.1002/adma.200801623

    Google Scholar 

  24. Anderson, P.W.: Phys. Rev. Lett. 9(7), 309–311 (1962)

    Article  ADS  Google Scholar 

  25. Palstra, T.T.M., Batlogg, B., Van Dover, R.B., Schneemeyer, L.F., Waszczak, J.V.: Phys. Rev. B 41(10), 6621–6632 (1990)

    Article  ADS  Google Scholar 

  26. Nikolo, M., Goldfarb, R.B.: Phys. Rev. B 39(10), 6615–6618 (1988)

    Article  ADS  Google Scholar 

  27. Jin, X., Xu, X.N., Zhu, J.S., Ji, H.L., Shen, G.J., Zhang, Y.T., Ding, S.Y., Yao, X.X.: Supercond. Sci. Technol. 5, 244–247 (1992)

    Article  ADS  Google Scholar 

  28. Ogale, S.B., Kwon, C., Rajeswari, M., Choughule, D.D., Greene, R.L., Venkatesan, T.: Phys. Rev. B 51(17), 11753–11759 (1995)

    Article  ADS  Google Scholar 

  29. Kameli, P., Salamati, H., Abdolhosseini, I., Sohrabi, D.: Physica C 468, 137–141 (2008)

    Article  ADS  Google Scholar 

  30. Özkurt, B., Özçelik, B.: J. Low Temp. Phys. 156, 22–29 (2009)

    Article  ADS  Google Scholar 

  31. Liyanawaduge, N.P., Kumar, A., Karunarathne, B.S.B., Malik, A., Kishan, H., Awana, V.P.S.: J. Supercond. Nov. Magn. 24, 1893–1899 (2011)

    Article  Google Scholar 

  32. Çelebi, S., Kölemen, U., Malik, A.I., Öztürk, A.: Phys. Status Solidi 194(1), 260–270 (2002)

    Article  ADS  Google Scholar 

  33. Salamati, H., Amighian, J., Pertanika, J.: Supercond. Sci. Technol. 6, 1–5 (1998)

    Google Scholar 

  34. Sarmago, R.V., Singidas, B.G.: Supercond. Sci. Technol. 17, S578–S582 (2004)

    Article  ADS  Google Scholar 

  35. Zhao, Y., Feng, Y., Cheng, C.H., Zhou, L., Koshizuka, N.: Physica C 357–360, 473–476 (2001)

    Article  Google Scholar 

  36. Higuchi, T., Yoo, S.I., Murakami, M.: Phys. Rev. B 59, 1514–1527 (1999)

    Article  ADS  Google Scholar 

  37. Goto, T., Inagaki, K., Watanabe, K.: Physica C 330, 51–57 (2000)

    Article  ADS  Google Scholar 

  38. Taylan Koparan, E., Surdu, A., Sidorenko, A., Yanmaz, E.: Physica C 473, 1–5 (2012)

    Article  ADS  Google Scholar 

  39. Zablotskii, V., Jirsa, M., Petrenko, P.: Phys. Rev. B 65, 2245081 (2002)

    Article  Google Scholar 

  40. Koblischka, M.R., Muralidhar, M., Murakami, M.: Physica C 337, 31–38 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Turkish Scientific and Research Council (TUBITAK) research grant (TBAG-107T751) and Karadeniz Technical University research grant (BAP- 2008.111.001.8). The authors are grateful to Mr. Mehmet Başoğlu for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Çakır.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çakır, B., Aydıner, A., Karaoğlu, K. et al. Flux Pinning in YBCO Single Crystal Grown on Y2O3 Layer. J Supercond Nov Magn 27, 1123–1129 (2014). https://doi.org/10.1007/s10948-013-2396-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2396-9

Keywords

Navigation