Skip to main content
Log in

Polyaniline–MnFe2O4-CTAB Nanocomposite in Ionic Liquid: Electrical Properties

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Polyaniline–MnFe2O4-CTAB nanocomposite was successfully synthesized by using 1-butyl-3-methyl-imidazolium trifluoromethane sulfonate (RTILs) as ionic liquid and Cetyl trimethylammonium bromide (CTAB) as surfactant via in-situ polymerization. The calculated average crystallite size, D XRD, of the product was 26±4 nm. Conductivity and permittivity properties of Polyaniline–MnFe2O4 nanocomposite was also exemplified by means of an impedance spectroscopy, which would be evaluated at frequency ranges up to 3 MHz for temperature range of 20–120 °C. In general, ac conductivity remains almost unchanged until it reaches up to 160 kHz, and then reduces slightly almost for all temperatures except for some slight fluctuation somehow at lower temperatures. The values fluctuate between 1.1–1.6 mS/cm at above all temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lucigno, C., Quadrini, F., Santo, L.: J. Compos. Mater. 42, 2841 (2008)

    Article  ADS  Google Scholar 

  2. Hussain, F., Hojjati, M., Okamoto, M., Gorga, R.E.: J. Compos. Mater. 40, 1511 (2006)

    Article  Google Scholar 

  3. Nguyen, V.H., Haldorai, Y., Phama, Q.L., Shim, J.J.: Mater. Sci. Eng. B 176, 773 (2011)

    Article  Google Scholar 

  4. Karaoğlu, E., Baykal, A., Deligöz, H., Şenel, M., Sözeri, H., Toprak, M.S.: J. Alloys Compd. 509, 8460 (2011)

    Article  Google Scholar 

  5. Yang, H., Zhang, C., Shi, X., Hu, H., Du, X., Fang, Y., Ma, Y., Wu, H., Yang, S.: Biomaterials 31, 3667 (2010)

    Article  Google Scholar 

  6. Sun, C., Lee, J.: Adv. Drug Deliv. Rev. 60, 1252 (2008)

    Article  Google Scholar 

  7. Nguyen, V.H., Haldorai, Y., Phama, Q.L., Shim, J.J.: Mater. Sci. Eng. B 176, 773 (2011)

    Article  Google Scholar 

  8. Goldman, A.: Modern Ferrite Technology. Van Nostrand–Reinhold, New York (1990)

    Google Scholar 

  9. Kitamoto, Y., Kantake, S., Shirasaki, S., Abe, F., Naoe, M.: J. Appl. Phys. 85, 4708 (1999)

    Article  ADS  Google Scholar 

  10. Shuping, Y., Mingjun, Xi., Kefei, H., Zhongming, W., Wensheng, Y., Hong, Z.: Thin Solid Films 519, 357 (2010)

    Article  Google Scholar 

  11. Jing, L., Lihua, Z., Yinghui, W., Yutaka, H., Aiqing, Z., Heqing, T.: Polymer 47, 7361 (2006)

    Article  Google Scholar 

  12. Yakuphanoglu, F., Basaran, E., Senkal, B.F., Sezer, E.: J. Phys. Chem. B 110, 16908 (2006)

    Article  Google Scholar 

  13. MacDiarmid, A.G., Chiang, J.C., Richter, A.F., Epstein, A.J.: Synth. Met. 18, 285 (1987)

    Article  Google Scholar 

  14. Elizabeth, W.P., Antonio, J.R., Wrighton, M.S.: J. Phys. Chem. 89, 1441 (1985)

    Article  Google Scholar 

  15. Guo, Y., Zhang, Y., Liu, H., Lai, S.W., Li, Y., Li, Yu., Hu, Wo., Wang, S., Che, C.M., Zhu, D.: J. Phys. Chem. Lett. 1, 327 (2010)

    Article  Google Scholar 

  16. Bereznev, S., Kois, J., Golovtsov, I., Opik, A., Mellikov, E.: Thin Solid Films 511–512, 425 (2006)

    Article  Google Scholar 

  17. Heeger, A.J., long, J.: Opt. Photonics News 7, 24 (1996)

    Article  Google Scholar 

  18. Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Science 270, 1789 (1995)

    Article  ADS  Google Scholar 

  19. Baykal, A., Kasapoğlu, N., Köseoğlu, Y., Toprak, M.S., Bayrakdar, H.: J. Alloys Compd. 464, 514 (2008)

    Article  Google Scholar 

  20. Ji, G.B., Tang, S.L., Ren, S.K., Zhang, F.M., Gu, B.X., Du, Y.W.: J. Cryst. Growth 270, 156 (2004)

    Article  ADS  Google Scholar 

  21. Wejrzanowski, T., Spychalski, W., Zniatowski, K., Kurzdlowski, K.J.: Int. J. Appl. Math. Comput. Sci. 18, 33 (2008)

    Article  Google Scholar 

  22. Pielaszek, R.: Analytical expression for diffraction line profile for polydispersive powders. In: Proceedings of the XIX Conference, Krakow, Poland, September, Appl. Crystallogr. (2003), 43

  23. Baykal, A., Günay, M., Toprak, M.S., Sozeri, H.: Mater. Res. Bull. 48, 378 (2013)

    Article  Google Scholar 

  24. Shafiu, S., Unal, B., Baykal, A.: J. Inorg. Organomet. Polym. (2013). doi:10.1007/s10904-013-9928-4

    Google Scholar 

  25. Unal, B., Baykal, A., Senel, M., Sozeri, H.: J. Inorg. Organomet. Polym. 23, 489 (2013)

    Article  Google Scholar 

  26. Unal, B., Senel, M., Baykal, A., Sozeri, H.: Curr. Appl. Phys. 13, 1404 (2013)

    Article  ADS  Google Scholar 

  27. Aydın, M., Unal, B., Esat, B., Baykal, A., Karaoglu, E., Toprak, M.S., Sozeri, H.: J. Alloys Compd. 514, 45 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Fatih University under BAP Grant no. P50021203_Y (2282).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baykal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shafiu, S., Ünal, B. & Baykal, A. Polyaniline–MnFe2O4-CTAB Nanocomposite in Ionic Liquid: Electrical Properties. J Supercond Nov Magn 27, 1073–1078 (2014). https://doi.org/10.1007/s10948-013-2376-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2376-0

Keywords

Navigation