Skip to main content
Log in

Omnidirectional Photonic Band Gap in One-Dimensional Ternary Superconductor-Dielectric Photonic Crystals Based on a New Thue–Morse Aperiodic Structure

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, an omnidirectional photonic band gap (OBG) of one-dimensional (1D) ternary superconductor-dielectric photonic crystals (SDPCs) based on a new Thue–Mores aperiodic structure is theoretically studied by the transfer matrix method (TMM) in detail. Compared to zero-\(\bar{n}\) gap or single negative (negative permittivity or negative permeability) gap, such OBG originates from Bragg gap. From the numerical results, the bandwidth and central frequency of OBG can be notably enlarged by manipulating the thicknesses of superconductor and dielectric layers but cease to change with increasing the Thue–Mores order. The OBG also can be tuned by the ambient temperature of the system especially close to the critical temperature. However, the damping coefficient of the superconductor layer has no effects on the OBG. The relative bandwidth of OBG also is investigated by the parameters as mentioned above. It is clear that such 1D ternary SDPCs have a superior feature in the enhancement of the bandwidth of OBG compared to the conventional ternary SDPCs and conventional ternary Thue–Mores aperiodic SDPCs. These results may provide theoretical instructions to design the future SDPCs devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Yablonovitch, E.: Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  2. John, S.: Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  3. Chutinan, A., Noda, S.: Appl. Phys. Lett. 75, 3739 (1999)

    Article  ADS  Google Scholar 

  4. Zhang, H.F., Liu, S.B., Kong, X.K.: Acta Phys. Sin. 60, 025215 (2011)

    Google Scholar 

  5. Manolatou, C., Johnson, S.G., Fan, S., Villeneuve, P.R., Haus, H.A., Joannopoulos, J.D.: J. Lightwave Technol. 17, 1682 (1999)

    Article  ADS  Google Scholar 

  6. Bayindir, M., Cubukcu, E., Bulu, I., Tut, T., Özbay, E., Soukoulis, C.M.: Phys. Rev. B 64, 1951131 (2001)

    Article  Google Scholar 

  7. Zhang, H.F., Liu, S.B., Kong, X.K., Zou, L., Li, C.Z., Qing, W.S.: Phys. Plasmas 19, 022103 (2012)

    Article  ADS  Google Scholar 

  8. Winn, J.N., Fink, Y., Fan, S., Joannopoulos, J.D.: Opt. Lett. 23, 1573 (1998)

    Article  ADS  Google Scholar 

  9. Wiersma, D.S., Bartolini, P., Lagendijk, A., Righini, R.: Nature 390, 671 (1997)

    Article  ADS  Google Scholar 

  10. Leung, K.M., Chang, Y.F.: Phys. Rev. Lett. 65, 2646 (1990)

    Article  ADS  Google Scholar 

  11. Zhang, Z., Satpathy, S.: Phys. Rev. Lett. 65, 2650 (1990)

    Article  ADS  Google Scholar 

  12. Yablonovitch, E., Gmitter, T.J., Leung, K.M.: Phys. Rev. Lett. 67, 2295 (1991)

    Article  ADS  Google Scholar 

  13. Zhang, H.F., Liu, S.B., Kong, X.K., Bian, B.R., Dai, Y.: Phys. Plasmas 19, 112102 (2012)

    Article  ADS  Google Scholar 

  14. Lavrinenko, A.V., Zhukovsky, S.V., Sandomirski, K.S., Gaponenko, S.V.: Phys. Rev. E 65, 036621 (1990)

    Article  ADS  Google Scholar 

  15. Quan, X.L., Yang, X.B.: Chin. Phys. B 18, 5313–1–13 (2009)

    Google Scholar 

  16. Naim, B.A., Mounir, K.: Phys. Status Solidi A 208, 161 (2011)

    Article  Google Scholar 

  17. Francoise, A., Jacques, P.: J. Phys. A, Math. Theor. 44, 035005 (2011)

    Article  Google Scholar 

  18. Hsueh, W.J., Wun, S.J., Lin, Z.J., Cheng, Y.H.: J. Opt. Soc. Am. B 28, 2584 (2011)

    Article  ADS  Google Scholar 

  19. Qiu, F., Peng, R.W., Huang, X.Q., Hu, X.F., Wang, M., Hu, A., Jiang, S.S., Feng, D.: Europhys. Lett. 68, 658 (2004)

    Article  ADS  Google Scholar 

  20. Yin, C.P., Wang, T.B., Dong, J.W., Chen, Y.H., Wang, H.Z.: Eur. Phys. J. B 69, 357 (2009)

    Article  ADS  Google Scholar 

  21. Kamp, M., Happ, T., Mahnkopf, S., Duan, G., Anand, S., Forchel, A.: Physica E 21, 802 (2004)

    Article  ADS  Google Scholar 

  22. Lepeshkin, N.N., Schweinsberg, A., Piredda, G., Bennink, R.S., Boyd, R.W.: Phys. Rev. Lett. 93, 123902 (2004)

    Article  ADS  Google Scholar 

  23. Zhang, H.F., Liu, S.B., Kong, X.K., Zhou, L., Li, C.Z., Bian, B.R.: Optik 124, 751 (2012)

    Article  ADS  Google Scholar 

  24. Zhang, H.F., Liu, S.B., Kong, X.K., Bian, B.R., Guo, Y.N.: Solid State Commun. 152, 1221 (2012)

    Article  ADS  Google Scholar 

  25. Zhang, H.F., Li, M., Liu, S.B.: Optoelectron. Lett. 5, 112 (2009)

    Article  ADS  Google Scholar 

  26. Thapa, K.B., Srivastava, S., Tiwai, S.: J. Supercond. Nov. Magn. 23, 517 (2010)

    Article  Google Scholar 

  27. Leonard, S.W., Mondia, J.P., van Driel, H.M., Toader, O., John, S., Busch, K., Birner, A., Gösele, U., Lehmann, V.: Phys. Rev. B 61, R2389 (2000)

    Article  ADS  Google Scholar 

  28. Wu, C.J.: J. Electromagn. Waves Appl. 23, 1113 (2009)

    Google Scholar 

  29. Lee, H.M., Wu, C.J.: J. Appl. Phys. 107, 09E149 (2010)

    Google Scholar 

  30. Chang, T.W., Wu, C.J.: J. Supercond. Nov. Magn. 24, 1315 (2011)

    Article  Google Scholar 

  31. Lyubchanskii, I.L., Dadonenkova, N.N., Zabolotin, A.E., Lee, Y.P., Rasing, T.: J. Opt. A, Pure Appl. Opt. 11, 114014 (2009)

    Article  ADS  Google Scholar 

  32. Dadoenkova, N.N., Zabolotin, A.E., Lyubchanskii, I.L., Lee, Y.P., Rasing, T.: J. Appl. Phys. 108, 093117 (2010)

    Article  ADS  Google Scholar 

  33. Li, C.Z., Liu, S.B., Kong, X.K., Bian, B.R., Zhang, X.Y.: Appl. Opt. 50, 2370 (2011)

    Article  ADS  Google Scholar 

  34. Cheng, C., Xu, C., Zhou, T., Zhang, X.F., Xu, Y.: J. Phys. Condens. Matter 20, 275203 (2008)

    Article  ADS  Google Scholar 

  35. Dai, X.Y., Xiang, Y.J., Wen, S.C.: Prog. Electromagn. Res. 120, 34 (2011)

    Article  Google Scholar 

  36. Chen, Y.B., Zhang, C., Zhu, Y.Y., Zhu, S.N., Ming, N.B.: Mater. Lett. 55, 12 (2002)

    Article  Google Scholar 

  37. Zhang, H.F., Liu, S.B., Kong, X.K., Bian, B.R., Zhao, X.: Prog. Electromagn. Res. B 40, 415 (2012)

    Article  Google Scholar 

  38. Zhang, H.F., Liu, S.B., Kong, X.K., Bian, B.R., Ma, B.: J. Supercond. Nov. Magn. 26, 77 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the supports from Chinese Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20123218110017), the Jiangsu Province Science Foundation (Grant No. BK2011727), and the Foundation of Aeronautical Science (Grant No. 20121852030), in part by the Fundamental Research Funds for the Central Universities and the Funding of Jiangsu Innovation Program for Graduate Education (Grant No. CXZZ11_0211).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Feng Zhang or Shao-Bin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, HF., Liu, SB. & Yang, H. Omnidirectional Photonic Band Gap in One-Dimensional Ternary Superconductor-Dielectric Photonic Crystals Based on a New Thue–Morse Aperiodic Structure. J Supercond Nov Magn 27, 41–52 (2014). https://doi.org/10.1007/s10948-013-2255-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2255-8

Keywords

Navigation