Skip to main content
Log in

High Temperature Interface Superconductivity

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We use atomic-layer-by-layer molecular beam epitaxy (ALL-MBE) to deposit atomically smooth films of cuprate superconductors and other complex oxides. Bilayers, multilayers, and superlattices are grown with atomic precision and virtually perfect interfaces. This has allowed a discovery and in-depth study of high-temperature interface superconductivity, which is briefly reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The electrolyte-superconductor technique was in fact pioneered by John McDevitt in early nineties, see e.g. the review by M.B. Clevenger et al. [8], and rediscovered almost two decades later.

References

  1. Shal’nikov, I.: Nature 142, 74 (1938)

    Article  ADS  Google Scholar 

  2. Zhang, T., et al.: Nat. Phys. 6, 104 (2010)

    Article  Google Scholar 

  3. Haviland, D.B., et al.: Phys. Rev. Lett. 62, 2180 (1989)

    Article  ADS  Google Scholar 

  4. Dagotto, E.: Rev. Mod. Phys. 66, 763 (1994)

    Article  ADS  Google Scholar 

  5. Bozovic, I.: IEEE Trans. Appl. Supercond. 11, 2686 (2001)

    Article  Google Scholar 

  6. Bozovic, I.: Phys. Usp. 178, 179 (2008)

    Article  Google Scholar 

  7. Brazovskii, S.A., Yakovenko, V.M.: Phys. Lett. A 132, 290 (1988)

    Article  ADS  Google Scholar 

  8. Clevenger, M.B., et al.: In: Bozovic, I., Pavuna, D. (eds.) Oxide Superconductors: Physics and Nanoengineering II. SPIE Proc., vol. 2697, pp. 508–519. SPIE, Bellingham (1996)

    Chapter  Google Scholar 

  9. Ueno, K., et al.: Nat. Mater. 7, 855 (2008)

    Article  ADS  Google Scholar 

  10. Ye, J.T., et al.: Nat. Mater. 9, 125 (2010)

    Article  ADS  Google Scholar 

  11. Bollinger, A.T., et al.: Nature 472, 458 (2011)

    Article  ADS  Google Scholar 

  12. Kastner, M.A., Birgeneau, R.J.: Rev. Mod. Phys. 70, 897 (1998)

    Article  ADS  Google Scholar 

  13. Ino, A., et al.: Phys. Rev. Lett. 79, 2101 (1997)

    Article  ADS  Google Scholar 

  14. Logvenov, G., et al.: Physica B 403, 1149 (2008)

    Article  ADS  Google Scholar 

  15. Smadici, S., et al.: Phys. Rev. Lett. 102, 107004 (2009)

    Article  ADS  Google Scholar 

  16. Gozar, A., et al.: Nature 455, 782 (2008)

    Article  ADS  Google Scholar 

  17. Ruefenacht, A., et al.: Solid-State Electron. 47, 2167 (2003)

    Article  ADS  Google Scholar 

  18. Butko, V.Y., et al.: Adv. Mater. 21, 1 (2009)

    Article  ADS  Google Scholar 

  19. Logvenov, G., et al.: Science 326, 699 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The experiments at BNL were done in collaboration with A.T. Bollinger, V.Y. Butko, C. Deville Caveline, and J. Seo, and the numerical simulation in collaboration with Z. Radovic and N. Bozovic. This research has been supported by US DOE Grant MA-509-MACA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Logvenov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logvenov, G., Gozar, A. & Bozovic, I. High Temperature Interface Superconductivity. J Supercond Nov Magn 26, 2863–2865 (2013). https://doi.org/10.1007/s10948-013-2215-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2215-3

Keywords

Navigation