Skip to main content
Log in

Quantum Isobaric Process in Ni2

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Using the excited electronic states of Ni2, we numerically build isobaric processes starting from different bond lengths and initial temperatures. Due to the complexity of the electronic structure of Ni2, the isobaric processes can only be realized within a certain range of bond lengths. During each process the spin moment of the dimer decreases with increasing temperature. The work and the heat involved in the processes are also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kieu, T.D.: The second law, Maxwell’s demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93, 140403 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  2. Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862 (2003)

    Article  ADS  Google Scholar 

  3. Wang, H., Liu, S.Q., He, J.Z.: Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine. Phys. Rev. E 79, 041113 (2009)

    Article  ADS  Google Scholar 

  4. Quan, H.T., Wang, Y.D., Liu, Y.X., Sun, C.P., Nori, F.: Maxwell’s demon assisted thermodynamic cycle in superconducting quantum circuits. Phys. Rev. Lett. 97, 180402 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  5. Hill, T.L.: An Introduction to Statistical Thermodynamics. Dover, New York (1986)

    Google Scholar 

  6. Zhang, W.X., Sun, C.P., Nori, F.: Equivalence condition for the canonical and microcanonical ensembles in coupled spin systems. Phys. Rev. E 82, 041127 (2010)

    Article  ADS  Google Scholar 

  7. Scully, M.O.: Quantum photocell: using quantum coherence to reduce radiative recombination and increase efficiency. Phys. Rev. Lett. 104, 207701 (2010)

    Article  ADS  Google Scholar 

  8. Zhang, T., Liu, W.T., Chen, P.X., Li, C.Z.: Four-level entangled quantum heat engines. Phys. Rev. A 75, 062102 (2007)

    Article  ADS  Google Scholar 

  9. Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  10. Quan, H.T.: Quantum thermodynamic cycles and quantum heat engines. II. Phys. Rev. E 79, 041129 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  11. Espostio, M., Kawai, R., Lindenberg, K., Van den Broeck, C.: Quantum-dot Carnot engine at maximum power. Phys. Rev. E 81, 041106 (2010)

    Article  ADS  Google Scholar 

  12. Thomas, G., Johal, R.S.: Coupled quantum Otto cycle. Phys. Rev. E 83, 031135 (2011)

    Article  ADS  Google Scholar 

  13. SAC-CI homepage. http://www.qcri.or.jp/sacci/

  14. Frisch, M.J., et al.: Gaussian 09 Revision A.02. Gaussian Inc., Wallingford (2009)

    Google Scholar 

  15. Pinegar, J.C., Langenberg, J.D., Arrington, C.A., Spain, E.M., Morse, M.D.: Ni2 revisited: reassignment of the ground electronic state. J. Chem. Phys. 102, 2 (1995)

    Article  Google Scholar 

  16. Lefkidis, G., Hübner, W.: First-principles study of ultrafast magneto-optical switching in NiO. Phys. Rev. B 76, 014418 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge financial support from the German Research Foundation through an Individual Grant and the Transregional Collaborative Research Center SFB/TRR88 “3MET”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Hübner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, C.D., Lefkidis, G. & Hübner, W. Quantum Isobaric Process in Ni2 . J Supercond Nov Magn 26, 1589–1594 (2013). https://doi.org/10.1007/s10948-012-1948-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1948-8

Keywords

Navigation