Skip to main content
Log in

Charge Transfer in YBCO Under Pressure with Bond Valence Sum Approach

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

The bond valence sum method has been developed to high pressures considering B0(p) for calculating the valences of atoms. This approach has the advantages of finding a universal B0(p) for all the atoms -at least in YBCO, ability to evaluate the valency of each atom, and charge neutrality requirement of the unit cell. As a result, a new structural refinement has led to a more exact structural detail. The position of apical oxygen is found to be specially crucial for hole distribution between the superconducting CuO2 planes and Cu–O charge reservoir chains. Under pressure, the hole concentration in CuO2 planes increases, but in the Cu–O chains decreases, consistent with the pressure induced charge transfer model in HTSC. Our results resolve the anomalous behavior of dTc/dp in YBCO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Attfield, A. L. Kharlanov, and J. A. McAllister, Nature 394, 157 (1998).

    Article  CAS  Google Scholar 

  2. A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, Nature 362, 56 (1993).

    Article  Google Scholar 

  3. L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, C. W. Chu, J. H. Eggert, and H. K. Mao, Phys. Rev. B 50, 4260 (1994).

    Article  CAS  Google Scholar 

  4. M. Akhavan, Physica B 321, 265 (2002).

    CAS  Google Scholar 

  5. M. R. Mohammadizadeh, H. Khosroabadi, and M. Akhavan, Physica B 321, 301 (2002).

    CAS  Google Scholar 

  6. Z. Yamani and M. Akhavan, Phys. Rev. B 56, 7894 (1997).

    Article  CAS  Google Scholar 

  7. Y. S. Yao, Y. F. Xiong, D. Jin, J. W. Li, F. Wu, J. L. Luo, and Z. X. Zhao, Physica C 282287, 49 (1997).

    Google Scholar 

  8. J. S. Schilling and S. Klots, in Physicsl Properties of High Temperature Superconductors, Vol. III, D.M. Ginsberg, ed. (World Scientific, Singapore, 1992), p. 59.

    Google Scholar 

  9. H. Takahashi and N. Mori, in Studies of High Temperature Superconductors, Vol. 16, A.V. Narlikar, ed. (Nova Science Publishers Inc., New York, 1995), p. 1.

    Google Scholar 

  10. J. D. Jorgensen, P. Shiyou, P. Lightfoot, D. G. Hinks, B. W. Veal, B. Dabrowski, A. P. Paulikas, R. Kleb, and I. D. Brown, Physica C 171, 93 (1990).

    CAS  Google Scholar 

  11. C. C. Almasan, S. H. Han, B. W. Lee, L. M. Paulius, M. B. Maple, B. W. Veal, J. W. Downey, A. P. Paulikas, Z. Fisk, and J. E. Schirber, Phys. Rev. Lett. 69, 680 (1992).

    CAS  PubMed  Google Scholar 

  12. H. Khosroabadi, M. R. Mohammadizadeh, and M. Akhavan, Physica C 370, 85 (2002).

    CAS  Google Scholar 

  13. H. Khosroabadi, M. R. Mohammadizadeh, and M. Akhavan, Physica B 321, 360 (2002).

    CAS  Google Scholar 

  14. M. R. Mohammadizadeh, and M. Akhavan, Phys. Rev. B 68, 104516 (2003).

    Google Scholar 

  15. F. Farges, S. Rossano, and J. M. Delaye, Bull. Liaison S.F.M.C. 13, 58 (2001).

    Google Scholar 

  16. M. Isobe, M. Onoda, T. Ohta, K. Kimoto, E. Takayama-Muromachi, A. W. Hewat, and K. Ohoyariia, Phys. Rev. B 62, 11667 (2000).

    CAS  Google Scholar 

  17. M. W. Luiaso and P. M. Woodward, Acta Crystallogr. B 57, 725 (2001).

    PubMed  Google Scholar 

  18. S. Y. Mao, Y. X. Huang, Z. B. Wei, J. X. Mi, Z. L. Huang, and J. T. Zhao, J. Solid State Chem. 149, 292 (2000).

    CAS  Google Scholar 

  19. F. Farges, D. Neuville, and G. E. Brown, Jr., Am. Mineral. 84, 1562 (1999).

    CAS  Google Scholar 

  20. S. Adams, Acta Crystallogr. B 57, 278 (2001).

    CAS  PubMed  Google Scholar 

  21. I. D. Brown, J. Solid State Chem. 90, 155 (1991).

    CAS  Google Scholar 

  22. I. D. Brown, J. Solid State Chem. 82, 122 (1989).

    CAS  Google Scholar 

  23. M. R. Mohammadizadeh, H. Khosroabadi, H. Akbarzadeh, and M. Akhavan, in Magnetic and Superconducting Materials (MSM-99), M. Akhavan, J. Jensen, and K. Kitazawa, eds. (World Scientific, Singapore, 2000), Vol. A, p. 251; H. Khosroabadi, M. R. Mohammadizadeh, and M. Akhavan, Iran. J. Phys. Res. 3, 59 (2002).

  24. I. D. Brown and D. Altermatt, Acta Crystallogr. B 41, 244 (1985).

    Google Scholar 

  25. J. L. Tallon, Physica C 168, 85 (1990).

    CAS  Google Scholar 

  26. Z. Akase, Y. Tomokiyo, Y. Tanaka, and M. Watanabe, Physica C 338, 137 (2000).

    CAS  Google Scholar 

  27. Y. Tokura, J. B. Torrance, T. C. Huang, and A. I. Nazzal, Phys. Rev. B 38, 7156 (1988).

    CAS  Google Scholar 

  28. I. D. Brown, private communication.

  29. H. M. Shao, S. A. Aruna, C. J. Wang, M. S. Zhuo, X. L. Sun, Y. M. Cai, and X. X. Yao, Physica C 341–348, 275 (2000).

    Google Scholar 

  30. I. D. Brown, Acta Crystallogr. B 48, 553 (1992); I.D. Brown, The Chemical Bond in Inorganic Chemistry (Oxford University Press, Oxford, 2001).

  31. J. D. Jorgensen, B. W. Veal, A. P. Paulikas, L. J. Novvicki, G. W. Crabtrce, H. Glaus, and W. K. Kwok, Phys. Rev. B 41, 1863 (1990).

    CAS  Google Scholar 

  32. D. H. Ha, S. Byon, and K. W. Lee, Physica C 340, 243 (2000).

    CAS  Google Scholar 

  33. N. P. Ong, in: Physical Properties of High Temperature Superconductors Vol. II, D. M. Ginsberg, ed. (World Scientific, Singapore, 1990), p. 459.

    Google Scholar 

  34. V. Psychairs, C. Mitros, A. Koufoudakis, H. Gamari-Seale, D. Niarchos, N. Kalitsounakis, N. Poulakis, D. Palles, and E. Liarokapis, Physica C 267, 211 (1996).

    Google Scholar 

  35. H. Akbarzadeh and M. R. Mohammadizadeh, Computat Mater. Sci. 8, 335 (1997).

    CAS  Google Scholar 

  36. J. Clayhold, S. Hagen, Z. Z. Wang, N. P. Ong, J. M. Tarascon, and P. Barboux, Phys. Rev. B 39, 777 (1989).

    CAS  Google Scholar 

  37. Y. Zhao, H. K. Liu, and S. X. Dou, Supercond. Sci. Technol. 5, 295 (1992).

    CAS  Google Scholar 

  38. R. J. Cava, A. W. Hewat, E. A. Hewat, B. Batlogg, M. Marezio, K. M. Rabe, J. J. Krajewski, W. F. Peck, Jr., and L. W. Rupp Jr., Physiea C 165, 419 (1990).

    CAS  Google Scholar 

  39. T. Minerva and C. Calandra, Physica C 170, 532 (1990).

    CAS  Google Scholar 

  40. P. E. Miceli, J. M. Tarascon, L. H. Greene, P. Barboux, J. D. Jorgensen, J. J. Rhyne, and D. A. Neumann, Phys. Rev. B 37, 5932 (1988).

    CAS  Google Scholar 

  41. M. W. Shafer, T. Penney, B. L. Olson, R. L. Greene, and R. H. Kock, Phys. Rev. B 39, 2914 (1989).

    CAS  Google Scholar 

  42. X. J. Chen, C. D. Gong, and Y. B. Yu, Phys. Rev. B 61, 3691 (2000).

    CAS  Google Scholar 

  43. X. Zhang, K. W. Yip, and C. K. Ong, J. Rhys. Chem. Solids 56, 153 (1995).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Akhavan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadizadeh, M.R., Akhavan, M. Charge Transfer in YBCO Under Pressure with Bond Valence Sum Approach. J Supercond 18, 299–307 (2005). https://doi.org/10.1007/s10948-005-3386-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-005-3386-3

Key Words

Navigation