Skip to main content
Log in

Ab initio calculations of structural, elastic, and electronic properties of silver nitrides

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The all-electron approach implemented in the CRYSTAL06 program is used along with a pseudopotential method in the pseudo-atomic orbital basis set to study the crystal structure, elastic constants and bulk moduli, the band structure and density of states for the family of silver nitrides. Calculations are performed within density functional theory with the use of local and gradient functionals to describe exchange and correlation. For the general type of the cubic lattice, all considered compounds can be put in the following order of their relative stability: AgN (rock salt structure), AgN2 (fluorite structure), Ag2N (cuprite structure), and Ag3N (anti-ReO2). It is shown that AgN, AgN2, and Ag2N are metals, whereas Ag3N is a semiconductor with a band gap of 0.25 eV. Chemical bonding in these compounds has ionic and covalent components, apart from the metal one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Kanoun and S. Goumri-Said, Phys. Lett. A, 362, 73–83 (2007).

    Article  CAS  Google Scholar 

  2. M. B. Kanoun and S. Goumri-Said, Phys. Rev. B, 72, No. 113103 (2005).

  3. R. Yu and X. F. Zhang, ibid., 72, No. 054103 (2002).

  4. U. Hahn and W. Weber,ibid., 53, 12684–12694 (1996).

    Article  CAS  Google Scholar 

  5. E. S. Shanley and J. L. Ennis, Industrial and Engineering Chem. Res., 30, 2503–2506 (1991).

    Article  CAS  Google Scholar 

  6. R. De Paiva, R. A. Nogueiza, and J. L. A. Alves, Phys. Rev. B, 75, No. 085105 (2007).

  7. E. Deligoz, K. Colakoglu, and Y. O. Ciftcl, Chin. Phys. Lett., 25, No. 6, 2154–2157 (2008).

    Article  CAS  Google Scholar 

  8. R. Dovesi, V. R. Saunders, C. Roetti, et al., CRYSTAL 06 Users’s Manual, Univ. Torino, Torino (2006).

    Google Scholar 

  9. J. Slater, Self-Consistent Field for Molecules and Solids, McGraw-Hill ( 1974).

  10. J. P. Perdew and A. Zunger, Phys. Rev. B, 23, 5048–5079 (1981).

    Article  CAS  Google Scholar 

  11. J. P. Perdew and Y. Wang, ibid., 33, 8800–8802 (1986).

    Article  Google Scholar 

  12. J. P. Perdew and Y. Wang, ibid., 45, 13244–13248 (1992).

    Article  Google Scholar 

  13. Internet resource: www.crystal.initio.it/Basic_Set/ptable.html.

  14. C. Gatti, V. R. Saunders, and C. Roetti, J. Chem. Phys., 101, 10686–10696 (1994).

    Article  CAS  Google Scholar 

  15. R. W. Jansen and O. F. Sankey, Phys. Rev. B, 35, 6520–6531 (1987).

    Article  Google Scholar 

  16. A. B. Gordienko and A. S. Poplavnoi, Izv. Vyssh. Uchebn. Zaved., Fizika, No. 1, 1–8 (1997).

    Google Scholar 

  17. G. B. Bachelet, D. R. Hamann, and M. Schlüter, Phys. Rev. B, 26, 4199–4228 (1982).

    Article  CAS  Google Scholar 

  18. T. Tsuchiya and K. Kawamura, J. Chem. Phys., 114, No. 22, 10086–10093 (2001).

    Article  CAS  Google Scholar 

  19. O. Beckstein, J. E. Klepeis, G. L. W. Hart, and O. Pankratov, Phys. Rev. B, 63, No. 134112 (2001).

    Google Scholar 

  20. F. D. Murnaghan, Proc. Nat. Acad. Sci. USA, 50, 244–247 (1944).

    Article  Google Scholar 

  21. Z. Wu, E. Zhao, H. Xiang, et al., Phys. Rev. B, 76, No. 054115 (2007).

    Article  Google Scholar 

  22. W. Voigt, Lehrbuch der Kristallphysik, Teubner, Leipzig (1928).

    Google Scholar 

  23. A. Z. Reuss, Angew. Math. Mech., 49, 49–58 (1929).

    Article  Google Scholar 

  24. R. Hill, Proc. Phys. Soc. (London), A65, 349–354 (1952).

    Google Scholar 

  25. F. Gao, Phys. Rev. B, 73, No. 132104 (2006).

  26. R. Yang, T. Zhang, P. Jiang, and Y. Bai, Appl. Phys. Lett., 92, No. 231906 (2008).

  27. P. Ravidran, L. Fast, P. A. Korzhavyi, and B. Johansson, J. Appl. Phys., 84, No. 9, 4891–4903 (1998).

    Article  Google Scholar 

  28. H. J. Frost and M. F. Ashby, Deformation-Mechanism Maps, Pergamon, Oxford (1982).

    Google Scholar 

  29. V. L. Moruzzi, J. F. Janak, and K. Schwarz, Phys. Rev. B, 37, 790–799 (1988).

    Article  CAS  Google Scholar 

  30. A. B. Gordienko, Yu. N. Zhuravlev, and D. G. Fedorov, Fiz. Tverd. Tela, 49, No. 2, 216–220 (2007).

    Google Scholar 

  31. A. B. Gordienko and S. A. Poplavnoi, Phys. Stat. Sol.(b), 204, 407–411 (1998).

    Article  Google Scholar 

  32. J. E. Klepeis, O. Beckstein, O. Pankratov, and G. L. W. Hart, Phys. Rev. B, 64, No. 155110 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Zhuravlev.

Additional information

Translated from Zhurnal Strukturnoi Khimii, Vol. 51, No. 3, pp. 425-432, May–June, 2010.

Original Russian Text Copyright © 2010 by A. B. Gordienko and Yu. N. Zhuravlev

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordienko, A.B., Zhuravlev, Y.N. Ab initio calculations of structural, elastic, and electronic properties of silver nitrides. J Struct Chem 51, 401–408 (2010). https://doi.org/10.1007/s10947-010-0061-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-010-0061-8

Keywords

Navigation