Skip to main content
Log in

Models of active sites in supported Cu metal catalysts in 1,2-dichloroethane dechlorination. DFT analysis

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

It is suggested that a set of discrete Cu nanoclusters satisfying the conditions of structural and electron stability should be used as models of active sites on supported metal catalysts. The close-packed Cu20 tetrahedral nanocluster that satisfies these two conditions was taken as a base model of active sites on supported copper catalysts. Theoretical analysis of two possible mechanisms of C-Cl bond dissociation of 1,2-dichloroethane on copper catalysts was performed by the density functional theory method. The first mechanism involves sequential splitting of C-Cl bonds in the molecule in three stages with further stabilization of chloroalkyl intermediates (stepwise mechanism). All these stages are activated. The limiting stage is the one that corresponds to dissociation of the first C-Cl bond with an activation energy of E# = 34.3 kcal/mol. The second mechanism corresponds to the simultaneous elimination of two chlorine atoms from 1,2-dichloroethane with liberation of ethylene in the gas phase; this is a one-stage process with an activation energy of E# = 26.1 kcal/mol (direct mechanism). A comparison of the two reaction routes shows that the direct mechanism is most probable on copper catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Bickle, T. Suzuki, and Y. Mitarai, Process Safety Environ. Prot., 70, 40 (1992).

    Google Scholar 

  2. K. E. Nelson, Industrial Environmental Chemistry, D. T. Sawyer and A. E. Martell (eds.), Plenum, New York (1992).

    Google Scholar 

  3. A. Maccol, Chem. Rev., 69, 33–60 (1969).

    Article  Google Scholar 

  4. R. M. Lago, H. L. Greene, S. C. Tsang, and M. Odlyha, Appl. Catal. B, 8, 107–121 (1996).

    Article  CAS  Google Scholar 

  5. J. R. Gonzalez-Velasco, R. Lopez-Fonseca, A. Aranzabal, et al., ibid., 24, 233–242 (2000).

    Article  CAS  Google Scholar 

  6. A. Aranzabal, J. A. Gonzalez-Marcos, R. Lopez-Fonseca, et al., Stud. Surf. Sci. Catal. B, 130, 1229–1234 (2000).

    Google Scholar 

  7. L. N. Zanaveskin, V. A. Aver’yanov, and Yu. A. Treger, Usp. Khim., 65, 667–675 (1996).

    CAS  Google Scholar 

  8. S. T. Ceyer, Ann. Rev. Phys. Chem., 39, 479–510 (1988).

    Article  CAS  Google Scholar 

  9. J. L. Lin and B. E. Bent, J. Phys. Chem., 96, 8529–8538 (1992).

    Article  CAS  Google Scholar 

  10. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York (1989).

    Google Scholar 

  11. A. D. Becke, Phys. Rev., A33, 2786–2797 (1986).

    Google Scholar 

  12. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  13. C. Lee, W. Yang, and R. G. Parr, Phys. Rev., B37, 785–797 (1988).

    Google Scholar 

  14. W. Stevens, H. Bash, and J. Krauss, J. Chem. Phys., 81, 6026–6035 (1984).

    Article  Google Scholar 

  15. T. R. Cundari and W. J. Stevens, ibid., 98, 5555–5567 (1993).

    Article  CAS  Google Scholar 

  16. R. Krishnan, J. S. Seger, and J. A. Pople, ibid., 72, 650–661 (1980).

    Article  CAS  Google Scholar 

  17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSIAN, Revision A.11, Pittsburgh, PA (2001).

  18. C. Winkler, A. Carew, R. Raval, et al., Surf. Rev. Lett., 8, 693–697 (2001).

    CAS  Google Scholar 

  19. S. Haq, C. Winkler, A. Carew, et al., J. Catal., 226, 1–8 (2004).

    Article  CAS  Google Scholar 

  20. D. G. Leopold, J. Ho, and W. C. Lineberger, J. Chem. Phys., 86, 1715–1726 (1987).

    Article  CAS  Google Scholar 

  21. C. L. Pettiette, S. H. Yang, M. J. Craycraft, et al., ibid., 88, 5377–5388 (1988).

    Article  CAS  Google Scholar 

  22. O. Cheshnovsky, K. J. Taylor, J. Conceicao, and R. E. Smalley, Phys. Rev. Lett., 64, 1785–1788 (1990).

    Article  CAS  Google Scholar 

  23. K. J. Taylor, C. L. Pettiette, O. Cheshnovsky, and R. E. Smalley, J. Chem. Phys., 96, 3319–3327 (1992).

    Article  CAS  Google Scholar 

  24. K. A. Jackson, Phys. Rev. B, 47, 9715–9722 (1993).

    Article  CAS  Google Scholar 

  25. C. Massobrio, A. Pasquarello, and A. J. Dal Corso, Chem. Phys., 109, 6626–6630 (1998).

    Article  CAS  Google Scholar 

  26. K. Jug, B. Zimmermann, P. Calaminici, and A. M. Koster, ibid., 116, 4497–4507 (2002).

    Article  CAS  Google Scholar 

  27. N. Lopez, F. Illas, and G. Pacchioni, J. Am. Chem. Soc., 121, 813–821 (1999).

    Article  CAS  Google Scholar 

  28. W. D. Knight, K. Clemenger, W. A. de Heer, et al., Phys. Rev. Lett., 52, 2141–2143 (1984).

    Article  CAS  Google Scholar 

  29. K. H. Meiwes Broer, in: Metal Clusters at Surfaces, K. H. Meiwes Broer (ed.), Springer, Berlin (2000), p. 151.

    Google Scholar 

  30. W. A. de Heer, Rev. Mod. Phys., 65, 611–676 (1993).

    Article  Google Scholar 

  31. M. Kabir, A. Mookerjee, and A. K. Bhattacharya, Eur. Phys. J. D: Atomic, Molecular and Optical Physics, 31, 477–485 (2004).

    Article  CAS  Google Scholar 

  32. S. N. Khanna and P. Jena, Phys. Rev. Lett., 69, 1664–1667 (1992).

    Article  CAS  Google Scholar 

  33. H. S. Taylor, Rroc. R. Soc. London, Ser. A, 108, 105–112 (1925).

    Article  Google Scholar 

  34. T. Zambelli, J. Wintterlin, J. Trost, and G. Ertl, Science, 273, 1688–1696 (1996).

    Article  CAS  Google Scholar 

  35. S. Dahl, A. Logadottir, R. C. Egeberg, et al., Phys. Rev. Lett., 83, 1814–1817 (1999).

    Article  Google Scholar 

  36. A. S. Y. Chan, S. Turton, and R. G. Jones, Surf. Sci., 433-435, 234–238 (1999).

    Article  CAS  Google Scholar 

  37. W. K. Walter and R. G. Jones, ibid., 264, 391–405 (1992).

    Article  CAS  Google Scholar 

  38. M. Kerkar, W. K. Walter, D. P. Woodruff, et al., ibid., 268, 36–44 (1992).

    Article  CAS  Google Scholar 

  39. S. Turton, M. Kadodwava, and R. G. Jones, ibid., 442, 517–530 (1999).

    Article  CAS  Google Scholar 

  40. S. Turton and R. G. Jones, ibid., 468, 165–175 (2000).

    Article  CAS  Google Scholar 

  41. A. S. Y. Chan and R. G. Jones, J. Vac. Sci. Techn. A, 19, 1474–1488 (2001).

    Article  CAS  Google Scholar 

  42. R. G. Jones, A. S. Chan, S. Turton, et al., J. Phys. Chem. B, 105, 10600–10609 (2001).

    Google Scholar 

  43. V. I. Avdeev, V. I. Kovalchuk, G. M. Zhidomirov, and J. L. d’Itri, Surf. Sci., 583, 46–59 (2005).

    CAS  Google Scholar 

  44. W. K. Walter, R. G. Jones, K. C. Waugh, and S. Bailey, Catal. Lett., 24, 333–342 (1999).

    Article  Google Scholar 

  45. Y. Anju, I. Mochida, H. Yamamoto, et al., Bull. Chem. Soc. Jpn., 45, 2319–2323 (1972).

    Article  CAS  Google Scholar 

  46. M. X. Yang, S. Sarkar, B. E. Bent, et al., Langmuir, 13, 229–242 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Avdeev.

Additional information

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 48, Supplement, pp. S169–S179, 2007.

Original Russian Text Copyright © 2007 by V. I. Avdeev, V. I. Kovalchuk, G. M. Zhidomirov, and J. L. d’Itri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avdeev, V.I., Kovalchuk, V.I., Zhidomirov, G.M. et al. Models of active sites in supported Cu metal catalysts in 1,2-dichloroethane dechlorination. DFT analysis. J Struct Chem 48 (Suppl 1), S160–S170 (2007). https://doi.org/10.1007/s10947-007-0159-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-007-0159-9

Keywords

Navigation