Skip to main content
Log in

Protolytic properties of cyanic and thiocyanic acids and their isoforms

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The electronic structure of HOCN, HSCN, HNCO, and HNCS molecules and [OCN] and [SCN] anions has been studied by ab initio calculations at HF/6-31G(d), HF/6-31G(d, p), MP2/6-31G(d)//HF/6-31G(d), and MP2/6-31G(d, p)//HF/6-31G(d, p) levels of theory. The HNCO and HNCS molecules are shown to have higher thermodynamic stability than HOCN and HSCN, respectively. The protolyte strength series are substantiated: HSCN > HOCN, HNCS > HNCO, HOCN > HNCO, HSCN > HNCS. Computations including electron correlation [MP2/6-31G(d)//HF/6-31G(d) and MP2/6-31G(d, p)//HF/6-31G (d, p)] reproduce the general sequence of proton-donor properties: HSCN > HOCN > HNCS > HNCO, which coincides with the hydrophobicity series for the compounds. The relative proton-donor capacity of these acids in water solutions is generally governed by the electronic structure and by the size of their molecules and [OCN] and [SCN] anions, but not by medium effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Saito, S. Hayakawa, F. Takei, and H. Yamadera, in: Chemistry and Periodic Table [Russian translation], K. Saito (ed.), Mir, Moscow (1982).

    Google Scholar 

  2. A. Wells, Structural Inorganic Chemistry, Vol. 3, Oxford University Press, New York (1983).

    Google Scholar 

  3. A. M. Golub, H. Keller, V. V. Skopenko, et al., in: Pseudohalide Chemistry [Russian translation], A. M. Golub, H. Keller, V. V. Skopenko (eds.), Vishchaya Shkola, Kiev (1981).

    Google Scholar 

  4. J. H. Teles, G. Maier, B. A. Hess, et al., Chem. Ber., 122, No. 4, 753–766 (1989).

    CAS  Google Scholar 

  5. N. S. Akhmetov, General and Inorganic Chemistry [in Russian], Vysshaya Shkola, Academia, Moscow (2001).

    Google Scholar 

  6. J. H. Boughton and R. N. Keller, J. Inorg. Nucl. Chem., 28, No. 12, 2851–2859 (1966).

    Article  CAS  Google Scholar 

  7. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York (1986).

    Google Scholar 

  8. J. Dennis and R. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, Englewood Cliffs, NJ (1983).

    Google Scholar 

  9. K. S. Krasnov, N. V. Filippenko, V. A. Bobkova, et al., Molecular Constants of Inorganic Compounds: Reference Book [in Russian], K. S. Krasnov (ed.), Khimiya, Leningrad (1979).

    Google Scholar 

  10. L. V. Gurvich, G. V. Karachevtsev, V. N. Kondratiev, et al., Chemical Bond Cleavage Energies. Ionization Potentials and Electron Affinities [in Russian], V. N. Kondratiev (ed.), Nauka, Moscow (1974).

    Google Scholar 

  11. M. I. Kabachnik, Usp. Khim., 48, No. 9, 1523–1547 (1979).

    Google Scholar 

  12. R. De Kock and C. Jasperse, Inorg. Chem., 22, No. 26, 3839–3843 (1983).

    Article  Google Scholar 

  13. S. Olivella, F. Urpi, and J. Vilarrasa, J. Comput. Chem., 5, No. 3, 230–236 (1984).

    Article  CAS  Google Scholar 

  14. J. L. Ozment and A. M. Schmiedekamp, Int. J. Quant. Chem., 43, 783–800 (1992).

    Article  CAS  Google Scholar 

  15. I. H. Williams, G. M. Maggiora, and R. L. Schowen, J. Am. Chem. Soc., 102, No. 27, 7831–7839 (1980).

    Article  CAS  Google Scholar 

  16. W. Hasel, T. F. Hendrickson, and W. C. Still, Tetrahedron Comp. Method., 1, No. 2, 103–116 (1988).

    Article  CAS  Google Scholar 

  17. W. C. Still, A. Tempczyk, R. C. Hawley, and Th. Hendrickson, J. Am. Chem. Soc., 112, No. 16, 6127–6129 (1990).

    Article  CAS  Google Scholar 

  18. N. Bodor, Z. Gabanyi, and Wong Chu-Kuok, ibid., 111, No. 11, 3783–3786 (1989).

    Article  CAS  Google Scholar 

  19. A. Gavezotti, ibid., 105, No. 16, 5220–5225 (1983).

    Article  Google Scholar 

  20. A. K. Ghose and G. M. Crippen, J. Chem. Inf. Comput. Sci., 27, No. 1, 21–35 (1987).

    Article  CAS  Google Scholar 

  21. V. N. Viswanadhan, A. K. Ghose, G. N. Revankar, and R. K. Robins, ibid., 29, No. 3, 163–172 (1989).

    Article  CAS  Google Scholar 

  22. K. J. Miller, J. Am. Chem. Soc., 112, No. 23, 8533–8542 (1990).

    Article  CAS  Google Scholar 

  23. A. K. Ghose and G. M. Crippen, J. Comput. Chem., 7, No. 4, 565–577 (1986).

    Article  CAS  Google Scholar 

  24. A. K. Ghose, A. Pritchett, and G. M. Crippen, ibid., 99, No. 1, 80–90 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2005 A. N. Pankratov and S. S. Khmelev

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 3, pp. 416–421, May–June, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pankratov, A.N., Khmelev, S.S. Protolytic properties of cyanic and thiocyanic acids and their isoforms. J Struct Chem 46, 404–408 (2005). https://doi.org/10.1007/s10947-006-0117-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-006-0117-y

Keywords

Navigation