Skip to main content
Log in

A density functional theory study on aurantinidin

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A complete conformational analysis on the isolated and PCM modeled aqueous solution cationic, neutral, and anionic forms of aurantinidin, comprising the diverse tautomers of the latter forms, was carried out at the B3LYP/6–31 +  + G(d,p) level. The most stable conformers of isolated cationic and neutral forms of aurantinidin are completely planar, whereas ring B and 3OH are significantly twisted with regard to the AC system in the anion. In contrast, PCM calculations show that the plane of the B ring is slightly rotated with regard to the AC bicycle even in the most stable conformers of the cation and quinonoidal form. The most stable conformers of the cation, in both gas phase and aqueous solution, display anti and syn orientations for hydroxyls at 3 and 5 positions, whereas syn and anti orientation of hydroxyls at 7 and 4' positions are nearly isoenergetic. The most stable tautomer of neutral aurantinidin is obtained by deprotonating hydroxyl at C5 in gas phase, but at C7 in water solution, according to PCM. Also, the most stable tautomer of the anion is different in gas phase (hydrogens are abstracted from hydroxyls at C5 and C4') and PCM calculations for water solution (C3 and C5). Tautomeric equilibria affect substantially the geometries of the AC-B backbone providing bond length variations that basically agree with the predictions of the resonance model. Intramolecular hydrogen bond between O3 and H6' is not present in the most stable anions. Ionization potentials and O–H bond dissociation energies are consistent with an important antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Clevenger S (1964) A new anthocyanidin in Impatiens. Can J Biochem 42:154–155. https://doi.org/10.1139/o64-018

    Article  CAS  Google Scholar 

  2. Hurst HM, Harborne JB (1967) Plant polyphenols–XVI.: identification of flavonoids by reductive cleavage. Phytochemistry 6:1111–1118. https://doi.org/10.1016/S0031-9422(00)86069-0

    Article  CAS  Google Scholar 

  3. Jurd L, Harborne JB (1968) The structure of aurantinidin. Phytochemistry 7:1209–1211. https://doi.org/10.1016/S0031-9422(00)88273-4

    Article  CAS  Google Scholar 

  4. Estévez L, Mosquera RA (2009) Conformational and substitution effects on the electron distribution in a series of anthocyanidins. J Phys Chem A 113:9908–9919. https://doi.org/10.1021/jp904298z

    Article  CAS  PubMed  Google Scholar 

  5. Guzmán R, Santiago C, Sánchez M (2009) A density functional study of antioxidant properties on anthocyanidins. J Mol Struct 935:110–114. https://doi.org/10.1016/j.molstruc.2009.06.048

    Article  CAS  Google Scholar 

  6. Sakata K, Saito N, Honda T (2006) Ab initio study of molecular structures and excited states in anthocyanidins. Tetrahedron 62:3721–3731. https://doi.org/10.1016/j.tet.2006.01.081

    Article  CAS  Google Scholar 

  7. Heredia FJ, Franchia-Aricha EM, Rivas-Gonzalo JC, Vicario IM, Santos-Buelga C (1998) Chromatic characterization of anthocyanins from red grapes-I. pH effect. Food Chem 63:491–498. https://doi.org/10.1016/S0308-8146(98)00051-X

    Article  CAS  Google Scholar 

  8. Brouillard R (1982) Chemical structure of anthocyanins. In: Markasis P (ed) Anthocyanins as food colors. Academic Press, New York

    Google Scholar 

  9. Hall CA III, Cuppett SL (1997) Structure-activities of natural antioxidants. In: Cuppett CA, Cuppett SL, Aruoma OI (eds) Antioxidant methodology in vivo and in vitro concepts. AOCS Press, Champaign, IL

    Google Scholar 

  10. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183. https://doi.org/10.1021/ja002455u

    Article  CAS  PubMed  Google Scholar 

  11. Pratt DA, DiLabio GA, Brigati G, Pedulli GF, Valgimigli L (2001) 5-Pyrimidinols: a novel chain-breaking antioxidants more effective than phenols. J Am Chem Soc 123:4625–4626. https://doi.org/10.1021/ja005679l

    Article  CAS  PubMed  Google Scholar 

  12. Zhang HY, Sun YM, Wang XL (2003) Substituent effects on O-H bond dissociation enthalpies and ionization potentials for catechols: a DFT study and its impliations in the rational design of phenolic antioxidants and elucidation of structure-activity relationships for flavonoid antioxidants. Chem Eur J 9:502–508. https://doi.org/10.1002/chem.200390052

    Article  CAS  PubMed  Google Scholar 

  13. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  14. Lee C, Yang G, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2016) Gaussian 09 revision D. 01. Gaussian Inc, Wallingford CT

    Google Scholar 

  16. Estévez L, Mosquera RA (2007) A density functional theory study on pelargonidin. J Phys Chem A 111:11100–11109. https://doi.org/10.1021/jp074941a

    Article  CAS  PubMed  Google Scholar 

  17. Estévez L, Mosquera RA (2008) Molecular structure and antioxidant properties of delphinidin. J Phys Chem A 112:10614–10623. https://doi.org/10.1021/jp8043237

    Article  CAS  PubMed  Google Scholar 

  18. Tomasi J, Mennuci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  19. Rezabal E, Mercero JM, Lopez X, Ugalde JM (2007) A theoretical study of the principles regulating the specificity for Al(III) against Mg(II) in protein cavities. J Inorg Biochem 101:1192–1200. https://doi.org/10.1016/j.jinorgbio.2007.06.010

    Article  CAS  PubMed  Google Scholar 

  20. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  21. Bader RFW (2000) AIMPAC: a suite of programs for the AIM theory. Mc Master University, Hamilton, ON, Canada

    Google Scholar 

  22. Pereira GK, Donate PM, Galembeck SE (1997) Effects of substitution for hydroxyl in the B-ring of the flavylium cation. J Mol Struct (THEOCHEM) 392:169–179. https://doi.org/10.1016/S0166-1280(97)90395-X

    Article  CAS  Google Scholar 

  23. Pereira GK, Donate PM, Galembeck SE (1996) Electronic structure of hydroxylated flavylium cation derivatives of the flavylium cation. J Mol Struct (THEOCHEM) 363:87–96. https://doi.org/10.1016/0166-1280(95)04423-X

    Article  CAS  Google Scholar 

  24. Mandado M, Graña AM, Mosquera RA (2004) Do 1,2-ethanediol and 1,2-dihydroxybenzene present intramolecular hydrogen bond? Phys Chem Chem Phys 6:4391–4396. https://doi.org/10.1039/B406266C

    Article  CAS  Google Scholar 

  25. Klein RA (2002) Electron density topological analysis of hydrogen bonding in glucopyranose and hydrated glucopyranose. J Am Chem Soc 124:13931–13937. https://doi.org/10.1021/ja0206947

    Article  CAS  PubMed  Google Scholar 

  26. Klein RA (2002) Hydrogen bonding in diols and binary diol–water systems investigated using DFT methods. II. Calculated infrared OH-stretch frequencies, force constants, and NMR chemical shifts correlate with hydrogen bond geometry and electron density topology. A reevaluation of geometrical criteria for hydrogen bonding. J Comput Chem 24:1120–1131. https://doi.org/10.1002/jcc.10256

    Article  CAS  Google Scholar 

  27. Estévez L, Mosquera RA (2008) Where is the positive charge of flavylium cations? Chem Phys Lett 451:121–126. https://doi.org/10.1016/j.cplett.2007.11.065

    Article  CAS  Google Scholar 

  28. Vila A, Mosquera RA (2001) Electron density analysis of small ring ethers. Tetrahedron 57:9415–9422. https://doi.org/10.1016/S0040-4020(01)00946-2

    Article  CAS  Google Scholar 

  29. Haslam E (1998) Practical polyphenolics. Cambridge University Press, Cambridge

    Google Scholar 

  30. Robbins RR (2003) Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 51:2866–2887. https://doi.org/10.1021/jf026182t

    Article  CAS  PubMed  Google Scholar 

  31. Zhang HY, Sun YM, Wang XL (2003) Substituent effects on O-H bond dissociation enthalpies and ionization potentials of catechols: a DFT study and its implications in the rational design of phenolic antioxidants and elucidation of structure–activity relationships for flavonoid antioxidants. Chem Eur J 9:502–508. https://doi.org/10.1002/chem.200390052

    Article  CAS  PubMed  Google Scholar 

  32. Lu L, Qiag M, Li F, Zhang H, Zhang S (2014) Theoretical investigation on the antioxidative activity of anthocyanidins: a DFT/B3LYP study. Dyes Pigm 103:175–182. https://doi.org/10.1016/j.dyepig.2013.12.015

    Article  CAS  Google Scholar 

  33. Johansson AJ, Blomberg MRA, Siegbahn PEM (2008) Quantifying the effects of the self-interaction error in density functional theory: when do the delocalized states appear? II. Iron-oxo complexes and closed-shell substrate molecules. J. Chem. Phys. 129:154301. https://doi.org/10.1063/1.2991180

    Article  CAS  PubMed  Google Scholar 

  34. Rienstra-Kiracofe JC, Tschumper GS, Shaefer HF III, Nandi S, Ellison GB (2022) Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. Chem Rev 102:231–282. https://doi.org/10.1021/cr990044u

    Article  CAS  Google Scholar 

  35. Leopoldini M, Marino T, Russo N, Toscano M (2004) Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J Phys Chem A 108:4916–4922. https://doi.org/10.1021/jp037247d

    Article  CAS  Google Scholar 

  36. De Heer MI, Korth HG, Mulder P (1999) Poly methoxy phenols in solution: O−H bond dissociation enthalpies, structures, and hydrogen bonding. J Org Chem 64:6969–6975. https://doi.org/10.1021/jo9901485

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank "Centro de Supercomputación de Galicia" (CESGA) for free access to its computational facilities. Xunta de Galicia is acknowledged for financial support through GRC 2019/24.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have shared all the tasks.

Corresponding author

Correspondence to Ricardo A. Mosquera.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcìa-Bugarín, M., Peña-Gallego, Á. & Mosquera, R.A. A density functional theory study on aurantinidin. Theor Chem Acc 142, 73 (2023). https://doi.org/10.1007/s00214-023-03021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03021-9

Keywords

Navigation