Skip to main content
Log in

Highly dispersed materials for rechargeable lithium batteries: Mechanochemical approach

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Mechanical activation was shown to be a successful method for preparation of highly dispersed cathode materials (LiMn2O4, LiCoO2, LiV3O8, Li3Fe2(PO4)3, LiTi2(PO4)3) and solid inorganic lithium ion electrolytes (Li1.3Al0.3Ti1.7(PO4)3) for lithium rechargeable batteries. The materials are characterized by sub-micron particle size and a structural disorder (cation vacancies, cation mixing, etc.). This is favorable for electrochemical properties (cycling) of cathode materials, i.e., an increase in both practical capacity and enhanced stability during lithium ion intercalation-deintercalation. However, these advantages are gained only when the cycling begins with intercalation of lithium ions, in other words, with discharge. Li-ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 samples obtained by mechanical activation is two times as large as that of sintered samples due to the absence of insulating impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Scrosati, Electrochim. Acta, 45, 2461–2466 (2000).

    Article  CAS  Google Scholar 

  2. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc., 144, 1188–1194 (1997).

    CAS  Google Scholar 

  3. C. W. Kwon, S. J. Hwang, A. Poquet, et al., New Trends in Intercalation Compounds for Energy Storage, Ed. C. Julien et al., Kluwer, Dordrecht (2002), pp. 439–446.

    Google Scholar 

  4. N. Kosova and E. Devyatkina, Ann. Chim. Sci. Mat., 27, 77–90 (2002).

    Article  CAS  Google Scholar 

  5. E. Avvakumov, M. Senna, and N. Kosova, Soft Mechanochemical Synthesis: a Basis for New Chemical Technologies, Kluwer, Boston (2001).

    Google Scholar 

  6. P. Barboux, J. M. Tarascon, and F. K. Shokoohi, J. Solid State Chem., 94, 185–196 (1991).

    Article  CAS  Google Scholar 

  7. N. V. Kosova, N. F. Uvarov, E. T. Devyatkina, and E. G. Avvakumov, Solid State Ionics, 135, 107–114 (2000).

    Article  CAS  Google Scholar 

  8. N. V. Kosova, E. T. Devyatkina, and S. G. Kozlova, J. Power Sources, 97/98, 406–411 (2001).

    Article  Google Scholar 

  9. V. Manev, A. Momchilov, A. Nassalevska, et al., ibid., 54, 501–506 (1995).

    Article  CAS  Google Scholar 

  10. N. V. Kosova, S. V. Vosel, V. F. Anufrienko, et al., J. Solid State Chem., 160, 444–449 (2001).

    Article  CAS  Google Scholar 

  11. A. S. Andersson, B. Kalska, P. Eyob, et al., Solid State Ionics, 140, 63–70 (2001).

    Article  CAS  Google Scholar 

  12. S. Patoux and C. Masquelier, Proc. of the 11 Intern. Meet. on Lithium Batteries, F. McLarnon (ed.), Monterey, California (2002), p. 321.

  13. T. Brousse, P. Fragnaud, R. Marchand, et al., J. Power Sources, 68, 412–415 (1997).

    Article  CAS  Google Scholar 

  14. H. Aono, E. Sugimoto, Y. Sadaoka, et al., J. Electrochem. Soc., 136, 590–595 (1989).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2004 by N. V. Kosova, E. T. Devyatkina, and D. I. Osintzev

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 45, Supplement, pp. 144–148, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosova, N.V., Devyatkina, E.T. & Osintzev, D.I. Highly dispersed materials for rechargeable lithium batteries: Mechanochemical approach. J Struct Chem 45 (Suppl 1), S142–S146 (2004). https://doi.org/10.1007/s10947-006-0109-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-006-0109-y

Keywords

Navigation