Skip to main content
Log in

Broadband High-Resolution Stigmatic Spectral Imaging in the XUV Range

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We describe the experimental implementation of high-resolution soft X-ray spectrographs, which are stigmatic throughout their operating range. The optical configuration comprises a grazing-incidence plane VLS grating and a broadband normal-incidence focusing mirror with an aperiodic multilayer coating structure. The operating range is defined by the aperiodic multilayer mirror in use (Mo/Si: 12.5 – 25 nm; Mo/Be: 11 – 14 nm). The spectral resolution is determined by CCD detector resolution and is numerically equal to the product of the plate scale and the double pixel size. Vertically spaceresolved laser-produced plasma spectra of multiply charged ions are presented. The spatial resolution is equal to about 26 μm, the double pixel size. We discuss the prospect of extending high-resolution stigmatic spectral imaging below 11 nm and outline the data of numerical calculations of broadband normal-incidence mirrors based on aperiodic Ru/Sr and La/B4C multilayer structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Seely, M. P. Kowalski, W. R. Hunter, et al., Appl. Opt., 32, 4890 (1993).

    Article  ADS  Google Scholar 

  2. J.F. Seely, C. Montcalm, S. Baker, and S. Bajt, Appl. Opt., 40, 5565 (2001).

    Article  ADS  Google Scholar 

  3. P. Z. Fan, Z. Q. Zhang, J. Z. Zhou, et al., Appl. Opt., 31, 6720 (1992).

    Article  ADS  Google Scholar 

  4. E. N. Ragozin, N. N. Kolachevsky, M. M. Mitropolsky, et al., Phys. Scripta, 47, 495 (1993); https://doi.org/10.1088/0031-8949/47/4/004

  5. I. L. Beigman, Yu. Yu. Pokrovskii, and E. N. Ragozin, J. Exp. Theor. Phys., 83, 981 (1996)

    ADS  Google Scholar 

  6. E. A. Vishnyakov, A. N. Shatokhin, and E. N. Ragozin, Quantum Electron., 45, 371 (2015); https://doi.org/10.1070/QE2015v045n04ABEH015595

  7. M. M. Barysheva, S. A. Garakhin, S. Y. Zuev, et al., Tech. Phys., 64, 1673 (2019); https://doi.org/10.1134/S1063784219110045

  8. M. M. Barysheva, S. A. Garakhin, A. O. Kolesnikov, et al., Opt. Mater. Express, 11, 3038 (2021); https://doi.org/10.1364/OME.434506

  9. E. A. Vishnyakov, F. F. Kamenets, V. V. Kondratenko, et al., Quantum Electron., 42, 143 (2012).

    Article  ADS  Google Scholar 

  10. A. S. Pirozhkov and E. N. Ragozin, Phys. Uspekhi, 58, 1095 (2015).

    Article  ADS  Google Scholar 

  11. D. L. Windt and E. M. Gullikson, Appl. Opt., 54, 5850 (2015).

    Article  ADS  Google Scholar 

  12. R. A. Shaposhnikov, V. N. Polkovnikov, N. N. Salashchenko, et al., Opt. Lett., 47, 4351 (2022); https://doi.org/10.1364/OL.469260

  13. R. A. Shaposhnikov, S. Yu. Zuev, V. N. Polkovnikov, et al., Tech. Phys., 2022, 996 (2022); https://doi.org/10.21883/TP.2022.08.54562.124-22; Zh. Tekh. Fiz., 2022, 1179 (2022) [in Russian], https://doi.org/10.21883/JTF.2022.08.52780.124-22

  14. N. I. Chkhalo, S. K¨unstner, V. N. Polkovnikov, et al., Appl. Phys. Lett., 102, 011602 (2013); https://doi.org/10.1063/1.4774298

  15. Atomic Scattering Factor Files, The Center for X-Ray Optics, LBNL (2021); http://henke.lbl.gov/opticalconstants

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Ragozin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, A.O., Shatokhin, A.N., Vishnyakov, E.A. et al. Broadband High-Resolution Stigmatic Spectral Imaging in the XUV Range. J Russ Laser Res 44, 480–487 (2023). https://doi.org/10.1007/s10946-023-10155-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10155-5

Keywords

Navigation