Skip to main content
Log in

High-Resolution Single-Photon Imaging with a Low-Fill-Factor 32×32 SPAD Array by Scanning in the Photosensitive Area

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Single-photon light detection and ranging (LiDAR) provides the single-photon sensitivity and picosecond time resolution, which is rapidly developing in three-dimensional (3D) imaging applications. Spatial resolution and imaging quality of LiDAR based on the single-photon avalanche-diode (SPAD) array detectors are difficult to improve, because currently available SPAD arrays still have small size array, due to the semiconductor manufacturing process limitation, and the functional circuitry around pixels reduces the fill factor. Herein, we propose a photon-efficient LiDAR method that guarantees the coupling relationship between the photosensitive area of each pixel and the corresponding beam spot illuminated on the target and uses 1/4 field of view (FoV) scanning imaging in the photosensitive area. The proposed method can effectively improve the spatial resolution of LiDAR system based on SPAD array detectors. Resolution test experiments show that the best observed (transversal) resolution is 3.1748 lp/mm at a working distance of 2.3 m, over tenfold larger than that of previous methods. Three-dimensional experiments prove that the system can achieve 3D high-resolution single-photon imaging, which is valuable in the fields of remote sensing and long-range target recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Amy and K. Pitts, Remote Sens Environ., 221, 247 (2019).

    Article  ADS  Google Scholar 

  2. A. McCarthy, N. J. Krichel, N. R. Gemmell, et al., Opt. Express, 21, 8904 (2013).

    Article  ADS  Google Scholar 

  3. A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, Opt. Express, 25, 11919 (2017).

    Article  ADS  Google Scholar 

  4. Z. P. Li, H. Xin, Y. Cao, et al., Photonics Res., 8, 1532 (2020).

    Article  Google Scholar 

  5. A. Maccarone, A. McCarthy, X. Ren, et al., Opt. Express, 23, 33911 (2015).

    Article  ADS  Google Scholar 

  6. R. Tobin, A. Halimi, A. McCarthy, et al., Opt. Express, 27, 4590 (2019).

    Article  ADS  Google Scholar 

  7. H. R. Hadfied, Nat. Photonics, 3, 696 (2009).

    Article  ADS  Google Scholar 

  8. G. Buller and A. Wallace, IEEE J. Sel. Top. Quantum Electron., 13, 10061006 (2007).

    Article  Google Scholar 

  9. Z. P. Li, X. Huang, P. Y. Jiang, et al., Opt. Express, 28, 4076 (2020).

    Article  ADS  Google Scholar 

  10. C.Wu, J. J. Liu, X. Huang, et al., PNAS, 118, e2024468118 (2021); DOI: https://doi.org/10.1073/pnas.2024468118

  11. Z. P. Li, J. T. Ye, X. Huang, et al., Optica, 8, 344 (2021).

    Article  ADS  Google Scholar 

  12. P. A. Hiskett, K. J. Gordon, J. W. Copley, and R. A. Lamb, “Long range 3D imaging with a 32×32 Geiger mode InGaAs/InP camera,” in: Advanced Photon Counting Techniques VIII, Proc. SPIE, 9114, 91140I (2014); DOI: https://doi.org/10.1117/12.2050540

  13. J. Tachella, Y. Altmann, N. Mellado, et al., Nat. Commun., 10, 1 (2019).

    Article  Google Scholar 

  14. M. Henriksson and P. Jonsson, Opt. Eng., 57, 093104 (2018).

    Article  ADS  Google Scholar 

  15. F. Piron, D. Morrison, M. R. Yuce, and J. M. Redoute, IEEE Sens. J., 21, 12654 (2020).

  16. C. Bruschini, H. Homulle, I. M. Antolovic, et al., Light Sci. Appl., 8, 1 (2019).

    Article  Google Scholar 

  17. E. Wade, R. Tobin, A. McCarthy, and G. Buller, “Sub-pixel microscanning for improved spatial resolution using single-photon LiDAR,” in: Advanced Photon Counting Techniques XV, Proc. SPIE, 11721, 1172106 (2021); DOI: https://doi.org/10.1117/12.2588766

  18. D. Shin, Computational Imaging with Small Numbers of Photons, PhD Theses, Boston, MIT, 179 p. (2016).

  19. X. Ren, Advanced Photon Counting Techniques for Long-Range Depth Imaging, PhD Theses, Edinburgh, Heriot-Watt Univ., 229 p. (2015).

  20. A. M. Pawlikowska, Single-Photon Counting LiDAR for Long-Range Three-Dimensional Imaging, PhD Theses, Edinburgh, Heriot-Watt Univ., 181 p. (2016).

  21. A. McCarthy, R. J. Collins, N. J. Krichel, et al., Appl. Opt., 48, 6241 (2009).

    Article  ADS  Google Scholar 

  22. A. McCarthy, R. J. Collins, N. J. Krichel, et al., Opt. Express, 21, 8904 (2013).

    Article  ADS  Google Scholar 

  23. D. Shin, F. Xu, D. Venkatraman, et al., Nat. Commun., 7, 1 (2016).

    Google Scholar 

  24. Z. T. Harmany, R. F. Marcia, and R. M. Willett, IEEE Trans. Image Process., 21, 1084 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  25. G. Intermite, A. McCarthy, R. E. Warburton, et al., Opt. Express, 23, 33777 (2015).

    Article  ADS  Google Scholar 

  26. S. Shimada, Y. Otake, S. Yoshida, et al., “A back illuminated 6 μm SPAD pixel array with high PDE and timing jitter performance,” in: IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA (2021), p. 20.1.1; DOI: https://doi.org/10.1109/IEDM19574.2021.9720639

  27. S. T. S. Holmstr¨om, U. Baran, and H. Urey, J. Microelectromech. Syst., 23, 259 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Wang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Li, Y., Gao, G. et al. High-Resolution Single-Photon Imaging with a Low-Fill-Factor 32×32 SPAD Array by Scanning in the Photosensitive Area. J Russ Laser Res 44, 348–356 (2023). https://doi.org/10.1007/s10946-023-10140-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10140-y

Keywords

Navigation