Skip to main content
Log in

Realization of an All-Optical Ultra-Fast and Compact Reversible Feynman Logic Gate

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We present a photonic-crystal structure for a reversible Feynman logic gate to be used in all-optical processors. The proposed structure consists of GaAs dielectric rods in the air. We use the plane-wave expansion (PWE) and finite-difference time-domain (FDTD) methods to examine the proper operation of the photonic-crystal logic gate. An important advantage of reversible logic gates is the ability to access logic gate inputs, using logic gate outputs. The use of these logic gates in photonic-crystal structures leads to high speed in calculations. This structure provides an ultra-fast and ultra-compact logic gate with a response time of 0.8 ps and a size of 78.34 μm2. In addition to the ultra-compactness of this logic gate, achieving an appropriate contrast ratio is the other advantage of the proposed photonic-crystal logic gate. The minimum contrast ratio of the structure is obtained to be 11.8 dB. Maintaining the efficiency of the device is the other critical subject of research. In addition to its usage as a reversible logic gate, this structure may also be multifunctional for alternative purposes, including XOR, comparator, buffer, and NOT logic gates in all-optical processors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Yablonovitch, Phys. Rev. Lett., 58, 2059 (1987); DOI: https://doi.org/10.1103/PhysRevLett.58.2059

    Article  ADS  Google Scholar 

  2. S. John, Phys. Rev. Lett., 58, 2486 (1987); DOI: https://doi.org/10.1103/PhysRevLett.58.2486

    Article  ADS  Google Scholar 

  3. E. Yablonovitch, T. Gmitter, and K.-M. Leung, Phys. Rev. Lett., 67, 2295 (1991); DOI: https://doi.org/10.1103/PhysRevLett.67.2295

    Article  ADS  Google Scholar 

  4. C. Sibilia, T. M. Benson, M. Marciniak, and T. Szoplik, Photonic Crystals: Physics and Technology, Springer (2008); DOI: https://doi.org/10.1007/978-88-470-0844-1

    Article  ADS  Google Scholar 

  5. I. Y. Vorgul and M. Marciniak, Opt. Quantum Electron., 34, 493 (2002); DOI: https://doi.org/10.1007/BF02892613

    Article  Google Scholar 

  6. D. Liu, Y. Gao, A. Tong, and S. Hu, Phys. Lett. A, 379, 214 (2015); DOI: https://doi.org/10.1016/j.physleta.2014.11.030

    Article  ADS  Google Scholar 

  7. L. Kassa-Baghdouche and E. Cassan, Opt. Quantum Electron., 52, 1 (2020); DOI: https://doi.org/10.1007/s11082-020-02366-w

    Article  Google Scholar 

  8. T. Baba, Nat. Photonics, 2, 465 (2008); DOI: https://doi.org/10.1038/nphoton.2008.146

    Article  ADS  Google Scholar 

  9. C. Chen, Z.-Q. Dong, J.-H. Shen, et al., ACS Omega, 3, 3211 (2018); DOI: https://doi.org/10.1021/acsomega.7b02046

    Article  Google Scholar 

  10. S. Olyaee and A. Mohebzadeh-Bahabady, Opt. Quantum Electron., 47, 1881 (2015); DOI: https://doi.org/10.1007/s11082-014-0053-6

    Article  Google Scholar 

  11. R. Zhang, Q. Wang, and X. Zheng, J. Mater. Chem. C, 6, 3182 (2018); DOI: https://doi.org/10.1039/C8TC00202A

    Article  Google Scholar 

  12. K. Saker, T. Bouchemat, M. Lahoubi, et al., J. Comput. Electron., 18, 619 (2019); DOI: https://doi.org/10.1007/s10825-019-01315-5

    Article  Google Scholar 

  13. M. Maache, Y. Fazea, I. Bile Hassan, et al., Symmetry, 12, 1480 (2020); DOI: https://doi.org/10.3390/sym12091480

  14. A. Mohebzadeh-Bahabady and S. Olyaee, IET Optoelectron., 12, 191 (2018); DOI: https://doi.org/10.1049/iet-opt.2017.0174

    Article  Google Scholar 

  15. E. H. Shaik and N. Rangaswamy, Opto-Electron. Rev., 26, 63 (2018); DOI: https://doi.org/10.1016/j.opelre.2018.01.003

    Article  ADS  Google Scholar 

  16. L. He, W. Zhang, and X. Zhang, Opt. Express, 27, 25841 (2019); DOI: https://doi.org/10.1364/OE.27.025841

    Article  ADS  Google Scholar 

  17. R. Ge, B. Yan, J. Xie, et al., J. Magn. Magn. Mater., 500, 166367 (2020); DOI: https://doi.org/10.1016/j.jmmm.2019.166367

  18. E. Veisi, M. Seifouri, and S. Olyaee, Appl. Phys. B, 127, 1 (2021); DOI: https://doi.org/10.1007/s00340-021-07618-5

    Article  Google Scholar 

  19. E. Anagha and R. Jeyachitra. Appl. Phys. B, 128, 1 (2022); DOI: https://doi.org/10.1007/s00340-021-07747-x

    Article  ADS  Google Scholar 

  20. A. Salmanpour, S. Mohammadnejad, and A. Bahrami, Opt. Quantum Electron., 47, 2249 (2015); DOI: https://doi.org/10.1007/s11082-014-0102-1

    Article  Google Scholar 

  21. L. P. Caballero, M. L. Povinelli, J. C. Ramirez, et al., Opt. Express, 30, 1976 (2022); DOI: https://doi.org/10.1364/OE.444714

    Article  ADS  Google Scholar 

  22. F. Parandin and N. Mahtabi, Opt. Quantum Electron., 53, 1 (2021); DOI: https://doi.org/10.1007/s11082-021-03322-y

    Article  Google Scholar 

  23. P. Andalib and N. Granpayeh, J. Opt. Soc. Am. B, 26, 10 (2009); DOI: https://doi.org/10.1364/JOSAB.26.000010

    Article  ADS  Google Scholar 

  24. A. Askarian, J. Opt. Commun., 2022, 000010151520210095 (2022); DOI: https://doi.org/10.1515/joc-2021-0095

    Article  Google Scholar 

  25. E. Veisi, M. Seifouri, and S. Olyaee, “Ultra-compact and fast all-optical photonic crystal half-subtractor logic gate,” in: 30th International Conference on Electrical Engineering (ICEE), IEEE (2022), p. 869; DOI: https://doi.org/10.1109/ICEE55646.2022.9827099

  26. F. Parandin and A. Sheykhian, Opt. Quantum Electron., 54, 443 (2022); DOI: https://doi.org/10.21203/rs.3.rs-1284840/v1

    Article  Google Scholar 

  27. M. Mohammadi, F. Moradiani, S. Olyaee, and M. Seifouri, Opt. Laser Technol., 142, 107280 (2021); DOI: https://doi.org/10.1016/j.optlastec.2021.107280

  28. R. Sathyadevaki and A. S. Raja, Photonic Netw. Commun., 33, 77, (2017); DOI: https://doi.org/10.1007/s11107-016-0620-9

    Article  Google Scholar 

  29. G. Delphi, S. Olyaee, M. Seifouri, and A. Mohebzadeh-Bahabady, J. Comput. Electron., 18, 1372 (2019); DOI: https://doi.org/10.1007/s10825-019-01399-z

    Article  Google Scholar 

  30. M. H. Sani, A. Ghanbari, and H. Saghaei, Opt. Quantum Electron., 52, 1 (2020); DOI: https://doi.org/10.1007/s11082-020-02418-1

    Article  Google Scholar 

  31. R. Rajasekar, J. K. Jayabarathan, and S. Robinson, Physica E Low Dimens. Syst. Nanostruct., 114, 113591 (2019); DOI: https://doi.org/10.1016/j.physe.2019.113591

  32. A. Foroughifar, H. Saghaei, and E. Veisi, Opt. Quantum Electron., 53, 1 (2021); DOI: 10.1007/s11082-021-02743-z

    Article  Google Scholar 

  33. A. Surendar, M. Asghari, and F. Mehdizadeh, Photonic Netw. Commun., 38, 244 (2019); DOI: https://doi.org/10.1007/s11107-019-00853-z

    Article  Google Scholar 

  34. F. Parandin, R. Kamarian, and M. Jomour, Appl. Opt., 60, 2275 (2021); DOI: https://doi.org/10.1364/AO.419737

    Article  ADS  Google Scholar 

  35. A. Askarian, J. Opt. Commun., 000010151520200311 (2021); DOI: https://doi.org/10.1515/joc-2020-0311

  36. F. Parandin and A. Askarian, J. Comput. Electron., 21, 1 (2021); DOI: https://doi.org/10.1007/s10825-022-01961-2

    Article  Google Scholar 

  37. F. Parandin and A. Sheykhian, Opt. Laser Technol., 151, 108021 (2022); DOI: https://doi.org/10.1016/j.optlastec.2022.108021

  38. R. Talebzadeh, F. Mehdizadeh, and A. Naseri, Frequenz, 74, 9 (2020); DOI: https://doi.org/10.1515/freq-2019-0082

    Article  ADS  Google Scholar 

  39. F. Mehdizadeh, M. Soroosh, H. A. Banaei, and E. Farshidi, IEEE Photon. J., 9, 1 (2017); DOI: https://doi.org/10.1109/JPHOT.2017.2690362

  40. X. Geng and L. Zhao, Photon. Nanostruct., 41, 100817 (2020); DOI: https://doi.org/10.1016/j.photonics.2020.100817

  41. S. C. Xavier, B. E. Carolin, A. P. Kabilan, and W. Johnson, IET Optoelectron., 10, 142 (2016); DOI: https://doi.org/10.1049/iet-opt.2015.0072

    Article  Google Scholar 

  42. R. M. Younis, N. F. Areed, and S. S. Obayya, IEEE Photon. Technol. Lett., 26, 1900 (2014); DOI: https://doi.org/10.1109/LPT.2014.2340435

    Article  Google Scholar 

  43. N. M. D’souza and V. Mathew, Opt. Laser Technol., 80, 214 (2016); DOI: https://doi.org/10.1016/j.optlastec.2016.01.014

    Article  ADS  Google Scholar 

  44. L. E. P. Caballero, J. P. V. Cano, P. S. Guimaraes, and O. P. V. Neto, IEEE Photon. J., 9, 1 (2017); DOI: https://doi.org/10.1109/JPHOT.2017.2736946

  45. R. Landauer, IBM J. Res. Dev., 5, 183 (1961); DOI: https://doi.org/10.1147/rd.53.0183

    Article  Google Scholar 

  46. L. Brillouin, Science and Information Theory, Courier Corporation (2013).

  47. K. Bordoloi, T. Theresa, and S. Prince, “Design of all optical reversible logic gates,” in: IEEE International Conference on Communication and Signal Processing (2014), p. 1583; DOI: https://doi.org/10.1109/ICCSP.2014.6950115

  48. R. Sattibabu and P. Ganguly, Opt. Eng., 59, 027104 (2020); DOI: https://doi.org/10.1117/1.OE.59.2.027104

  49. L. P. Caballero, J. Vasco, P. Guimaraes, and O. P. V. Neto, “All-optical majority and Feynman gates in photonic crystals,” in: The 30th IEEE Symposium on Microelectronics Technology and Devices (SBMicro), (2015), p. 1; DOI: https://doi.org/10.1109/SBMicro.2015.7298150

  50. D. G. S. Rao, S. Swarnakar, and S. Kumar, Appl. Opt., 59, 11003 (2020); DOI: https://doi.org/10.1364/AO.409404

    Article  ADS  Google Scholar 

  51. M. Hassangholizadeh-Kashtiban, H. Alipour-Banaei, M. B. Tavakoli, and R. Sabbaghi-Nadooshan, J. Comput. Electron., 19, 1281 (2020); DOI: https://doi.org/10.1007/s10825-020-01508-3

    Article  Google Scholar 

  52. M. Hassangholizadeh-Kashtiban, H. Alipour-Banaei, M. B. Tavakoli, and R. Sabbaghi-Nadooshan, Appl. Opt., 59, 635 (2020); DOI: https://doi.org/10.1364/AO.379613

    Article  ADS  Google Scholar 

  53. A. Farmani, A. Mir, and M. Irannejad, J. Opt. Soc. Am. B, 36, 811 (2019); DOI: https://doi.org/10.1364/JOSAB.36.000811

    Article  ADS  Google Scholar 

  54. F. Parandin and M. Moayed, Optik, 216, 164930 (2020); DOI: https://doi.org/10.1016/j.ijleo.2020.164930

  55. P.-L. Li, D.-X. Huang, and X. L. Zhang, IEEE J. Quantum Electron., 45, 1542 (2009); DOI: https://doi.org/10.1109/JQE.2009.2025144

    Article  ADS  Google Scholar 

  56. L. Cui and L. Yu, Mod. Phys. Lett. B, 32, 1850008 (2018); DOI: https://doi.org/10.1142/S0217984918500082

    Article  ADS  Google Scholar 

  57. Y. Sang, X. Wu, S. S. Raja, et al., Adv. Opt. Mater., 6, 1701368 (2018); DOI: https://doi.org/10.1002/adom.201701368

    Article  Google Scholar 

  58. H. Yang, V. Khayrudinov, V. Dhaka, et al., Sci. Adv., 4, 7954 (2018); DOI: https://doi.org/10.1126/sciadv.aar7954

    Article  ADS  Google Scholar 

  59. Z. Zhu, J. Yuan, and L. Jiang, Opt. Lett., 45, 6362 (2020); DOI: https://doi.org/10.1364/OL.402085

    Article  ADS  Google Scholar 

  60. A. Kotb and C. Guo, Opt. Laser Technol., 137, 106828 (2021); DOI: https://doi.org/10.1016/j.optlastec.2020.106828

  61. R. Rajasekar, G. T. Raja, and S. Robinson, IEEE Trans. Nanotechnol., 20, 282 (2021);

    Article  ADS  Google Scholar 

  62. DOI: https://doi.org/10.1109/TNANO.2021.3069401

  63. 62. A. Raja, K. Mukherjee, and J. Roy, J. Comput. Electron., 20, 387 (2021); DOI: https://doi.org/10.1007/s10825-020-01607-1

    Article  Google Scholar 

  64. E. Veisi, M. Seifouri, and S. Olyaee, Opt. Laser Technol., 151, 108068 (2022); DOI: https://doi.org/10.1016/j.optlastec.2022.108068

  65. Y. Xie, Y. Yin, T. Song, et al., Optik, 252, 168684 (2022); DOI: https://doi.org/10.1016/j.ijleo.2022.168684

  66. 65. E. Anagha and R. Jeyachitra, IEEE J. Quantum Electron., 57, 1 (2021); DOI: https://doi.org/10.1109/JQE.2021.3115813

    Article  Google Scholar 

  67. 66. K. R. Prabha, R. Arunkumar, and S. Robinson, Frequenz, 74, 417 (2020); DOI: https://doi.org/10.1515/freq-2020-0015

    Article  ADS  Google Scholar 

  68. 67. J. H. Greene and A. Taflove, Opt. Express, 14, 8305 (2006); DOI: https://doi.org/10.1364/OE.14.008305

    Article  ADS  Google Scholar 

  69. 68. C. J.Wu, C. P. Liu, and Z. Ouyang, Appl. Opt., 51, 680 (2012); DOI: https://doi.org/10.1364/AO.51.000680

    Article  ADS  Google Scholar 

  70. 69. E. Veisi, M. Seifouri, and S. Olyaee, Opt. Quantum Electron., 54, 1 (2022); DOI: https://doi.org/10.1007/s11082-022-03761-1

    Article  Google Scholar 

  71. 70. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, John Wiley & Sons (2013); DOI: https://doi.org/10.1002/9781118646700

    Article  Google Scholar 

  72. 71. J. E. Houle and D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method with Python, John Wiley & Sons (2020); DOI: https://doi.org/10.1002/9781119565826

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Olyaee.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veisi, E., Keshvari, M.S., Seifouri, M. et al. Realization of an All-Optical Ultra-Fast and Compact Reversible Feynman Logic Gate. J Russ Laser Res 44, 235–245 (2023). https://doi.org/10.1007/s10946-023-10128-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10128-8

Keywords

Navigation