Skip to main content
Log in

Noise-Tolerant Superconducting Gates with High Fidelity

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We design two-qubit quantum gates by coupling two Transmon qubits with a capacitor and study the time-dependent dynamics of the qubit–qubit interaction for different inter-qubit interaction strengths in the presence of quantum noise. Particularly, we focus on three famous quantum gates, iSWAP, bSWAP, and CNOT. In this study, we investigate different types of noises, such as emission, absorption, and dephasing. Two-qubit gates, iSWAP and bSWAP, are modeled by direct variable coupling between two Transmon qubits. In addition, we construct the CNOT gate, using three qubits, where the two qubits are used for inputs and outputs, and the middle qubit acts as a tunable coupler between the two qubits. The middle qubit is needed for energy conservation; we called it a garbage bit, since we do not use it in logical operations. For the two input/output coupled qubits, direct variable capacitor coupling is also used. In view of the coupled Lindblad master equations, we study the time-dependent dynamics of our proposed quantum models. A significant impact of emission/absorption quantum noise can be seen on iSWAP, bSWAP, and CNOT gates, as compared to dephasing noise. Additionally, we also discuss the generation of entanglement for different scenarios with and without noises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. J. O’Malley, J. Kelly, R. Barends, et al., Phys. Rev. Appl., 3, 044009 (2015); https://doi.org/10.1103/PhysRevApplied.3.044009

  2. C. Song, K. Xu, W. Liu, et al., Phys. Rev. Lett., 119, 180511 (2017); https://doi.org/10.1103/PhysRevLett.119.180511

  3. J. S. Otterbach, R. Manenti, N. Alidoust, et al., Unsupervised machine learning on a hybrid quantum computer, arXiv: 1712.05771 (2017).

  4. BH. Bernien, S. Schwartz, A. Keesling, et al., Nature, 551, 579 (2017); https://doi.org/10.1038/nature24622

  5. J. Zhang, G. Pagano, P. W. Hess, et al., Nature, 551, 601 (2017); https://doi.org/10.1038/nature24654

  6. M. Abid, A. Ayoub, and J. Akram, Physica B Condens. Matter, 640, 414079 (2022); https://doi.org/10.1016/j.physb.2022.414079

  7. M. Viteau, J. Radogostowicz, and M. Bason, et al., Phys. Rev. Lett., 107, 060402 (2011); https://doi.org/10.1103/PhysRevLett.107.060402

  8. J. Preskill, Quantum, 2, 79 (2018); https://doi.org/10.22331/q-2018-08-06-79

  9. P. Sidorov, M. Aksenov, I. Zalivako, et al., Coherent effects contribution to a fast gate fidelity in ion quantum computer, arXiv: 2112.06220 (2021).

  10. E. Onac, F. Balestro, L. W. van Beveren, et al., Phys. Rev. Lett., 96, 176601 (2006); https://doi.org/10.1103/PhysRevLett.96.176601

  11. S. Gustavsson, M. Studer, R. Leturcq, et al., Phys. Rev. Lett., 99, 206804 (2007); https://doi.org/10.1103/PhysRevLett.99.206804

  12. G. A. Alvarez, E. P. Danieli, P. R. Levstein, et al., J. Chem. Phys., 124, 194507 (2006); https://doi.org/10.1063/1.2193518

  13. B. Hensen, W. Wei Huang, C.-H. Yang, et al., Nat. Nanotechnol., 15, 13 (2020); https://doi.org/10.1038/s41565-019-0587-7

  14. R. Barends, J. Kelly, A. Megrant, et al., Nature, 508, 500 (2014); https://doi.org/10.1038/nature13171

  15. M. W. Johnson, M. H. Amin, S. Gildert, et al., Nature, 473, 194 (2011); https://doi.org/10.1038/nature10012

  16. E. Knill, D. Leibfried, R. Reichle, et al., Phys. Rev. A, 77, 012307 (2008); https://doi.org/10.1103/PhysRevA.77.012307

  17. L. DiCarlo, M. D. Reed, L. Sun, et al., Nature, 467, 574 (2010); https://doi.org/10.1038/nature09416

  18. S. Sheldon, L. S. Bishop, E. Magesan, et al., Phys. Rev. A, 93, 012301 (2016); https://doi.org/10.1103/PhysRevA.93.012301

  19. S. H. Sureshbabu, M. Sajjan, S. Oh, et al., J. Chem. Inf. Model., 61, 2667 (2021); https://doi.org/10.1021/acs.jcim.1c00294

  20. L. K. Joshi, A. Elben, A. Vikram, et al., Phys. Rev. X, 12, 011018 (2022); https://doi.org/10.1103/PhysRevX.12.011018

  21. D.-R. W. Yost, M. E. Schwartz, J. Mallek, et al., NPJ Quantum Inf., 6, 1 (2020); https://doi.org/10.1109/LED.2020.2994862

  22. M. H. Devoret, J. M. Martinis, and H. Michel, “Implementing qubits with superconducting integrated circuits,” in: H. O. Everitt (Ed.), Experimental Aspects of Quantum Computing, Springer, Boston, MA (2005), pp. 163–203; https://doi.org/10.1007/0-387-27732-3 12

  23. P. W. Shor, Phys. Rev. A, 52, R2493 (1995); https://doi.org/10.1103/PhysRevA.52.R2493

  24. M. H. Devoret and R. J. Schoelkopf, Science, 339, 1169 (2013); https://doi.org/10.1126/science.1231930

  25. V. Kaushal, B. Lekitsch, A. Stahl, et al., AVS Quantum Sci., 2, 014101 (2020); https://doi.org/10.1116/1.5126186

  26. J. Akram, Ann. Phys., 2200511 (2022); https://doi.org/10.1002/andp.202200511

  27. J. Akram and F. Saif, J. Russ. Laser Res., 29, 538 (2008); https://doi.org/10.1007/s10946-008-9045-y

  28. J. R. West, D. A. Lidar, B. H. Fong, et al., Phys. Rev. Lett., 105, 230503 (2010); https://doi.org/10.1103/PhysRevLett.105.230503

  29. E. Zahedinejad, J. Ghosh, and B. C. Sanders, Phys. Rev. Appl., 6, 054005 (2016); https://doi.org/10.1103/PhysRevApplied.6.054005

  30. T. Wang, Z. Zhang, L. Xiang, et al., New J. Phys., 20, 065003 (2018); https://doi.org/10.1088/1367-2630/aac9e7

  31. S. Li, J. Xue, T. Chen, et al., Adv. Quantum Technol., 4, 2000140 (2021); https://doi.org/10.1002/qute.202000140

  32. A. Ayoub and J. Akram, Physica C Supercond., 591, 1353977 (2021); https://doi.org/10.1016/j.physc.2021.1353977

  33. F. Arute, K. Arya, R. Babbush, et al., Nature, 574, 505 (2019); https://doi.org/10.1038/s41586-019-1666-5

  34. Y. Xu, J. Chu, J. Yuan, et al., Phys. Rev. Lett., 125, 240503 (2020); https://doi.org/10.1103/PhysRevLett.125.240503

  35. Y. Sung, L. Ding, J. Braumuller, et al., Phys. Rev. X, 11, 021058 (2021); https://doi.org/10.1103/PhysRevX.11.021058

  36. F. Yan, P. Krantz, Y. Sung, et al., Phys. Rev. Appl., 10, 054062 (2018); https://doi.org/10.1103/PhysRevApplied.10.054062

  37. J. Koch, T. M. Yu, J. Gambetta, et al., Phys. Rev. A, 76, 042319 (2007); https://doi.org/10.1103/PhysRevA.76.042319

  38. R. Bialczak, M. Ansmann, M. Hofheinz, et al., Phys. Rev. Lett., 106, 060501 (2011); https://doi.org/10.1103/PhysRevLett.106.060501

  39. M. Roth, M. Ganzhorn, N. Moll, et al., Phys. Rev. A, 96, 062323 (2017); https://doi.org/10.1103/PhysRevA.96.062323

  40. S. Richer, “Perturbative Analysis of Two-Qubit Gates on Transmon Gubits”, Ph.D. Theses, RWTH Aachen University (2013); URL: www.quantuminfo.physik.rwth-aachen.de/global/showdocument.asp?id=aaaaaaaaaajiobd

  41. F. Yan, P. Krantz, Y. Sung, et al., Phys. Rev. Appl., 10, 054062 (2018); https://doi.org/10.1103/PhysRevApplied.10.054062

  42. X. Li, T. Cai, H. Yan, et al., Phys. Rev. Appl., 14, 024070 (2020); https://doi.org/10.1103/PhysRevApplied.14.024070

  43. H. Lagemann, D. Willsch, M. Willsch, et al., Phys. Rev. A, 106, 022615 (2022); https://doi.org/10.1103/PhysRevA.106.022615

  44. P. Krantz, M. Kjaergaard, F. Yan, et al., Appl. Phys. Rev., 6, 021318 (2019); https://doi.org/10.1063/1.5089550

  45. S. Kwon, A. Tomonaga, G. Lakshmi Bhai, et al., J. Appl. Phys., 129, 041102 (2021); https://doi.org/10.1063/5.0029735

  46. B. W. Shore and P. L. Knight, J. Mod. Opt., 40, 1195 (1993); https://doi.org/10.1080/09500349314551321

  47. D. Manzano, AIP Adv., 10, 025106 (2020); https://doi.org/10.1063/1.5115323

  48. M. Cattaneo, G. L. Giorgi, S. Maniscalco, et al., New J. Phys., 21, 113045 (2019); https://doi.org/10.1088/1367-2630/ab54ac

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed Akram.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, J., Akram, J. Noise-Tolerant Superconducting Gates with High Fidelity. J Russ Laser Res 44, 135–147 (2023). https://doi.org/10.1007/s10946-023-10116-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10116-y

Keywords

Navigation