Skip to main content
Log in

Propagation Characteristics of Partially-Coherent Radially-Polarized Vortex Beams Through Non-Kolmogorov Turbulence Along a Slant Path

  • Published:
Journal of Russian Laser Research Aims and scope

We explore the propagation characteristics of a partially-coherent radially-polarized vortex beam (PCRPVB) with Gaussian Schell-model correlation structure and, using the extended Huygens–Fresnel principle, derive analytical formulas for the average intensity of PCRPVB propagating through the non-Kolmogorov atmospheric turbulence along a slant path. Numerical results show that the normalized initial profile with a hollow distribution of PCRPVB in turbulence gradually converts into a flat-topped distribution with increasing propagation distance and zenith angle, and finally evolves into a Gaussian-like profile. Also, we can find that a PCRPVB with the high topological charges l has the stronger ability of resisting turbulence in comparison with the non-vortex beam. Our work will be useful for free-space optical communications, remote sensing, and the lidar distance measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Martinez-Herrero and F. Prado, Opt. Express, 23, 5043 (2015).

    Article  ADS  Google Scholar 

  2. L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, Phys. Rev. A, 45, 8185 (1992).

    Article  ADS  Google Scholar 

  3. S. M. Kim and G. Gbur, Phys. Rev. A, 79, 033844-1 (2009).

    Article  ADS  Google Scholar 

  4. G. Molina-Terriza, J. P. Torres, and L. Torner, Nat. Phys., 3, 305 (2007).

    Article  Google Scholar 

  5. G. Gibson, J. Courtial, M. Padgett, et al., Opt. Express, 12, 5448 (2004).

    Article  ADS  Google Scholar 

  6. K. Dholakia and T. Cizmar, Nat. Photonics, 5, 335 (2011).

    Article  ADS  Google Scholar 

  7. X. Zhang, R. Chen, and A. Wang, Opt. Commun., 414, 10 (2018).

    Article  ADS  Google Scholar 

  8. M. Dong, C. Zhao, Y. Cai, and Y. Yang, Sci. China Phys. Mech., 64, 224201 (2021).

    Article  Google Scholar 

  9. J. Shu, Z. Chen, J. Pu, et al., Opt. Commun., 295, 5 (2013).

    Article  ADS  Google Scholar 

  10. L. Liu, H. Wang, L. Liu, et al., Opt. Express, 30, 7511 (2022).

    Article  ADS  Google Scholar 

  11. H. Xu, R. Zhang, Z. Sheng, and J. Qu, Opt. Commun., 480, 126477 (2021).

    Article  Google Scholar 

  12. J. Zeng, C. Liang, H. Wang, et al., Opt. Express, 28, 11493 (2020).

    Article  ADS  Google Scholar 

  13. Z. Zhou and L. Zhou, Chinese Phys. B, 25, 030701 (2016)

    Article  ADS  Google Scholar 

  14. H. Xu, R. Zhang, Z. Sheng, and J. Qu, Opt. Express, 17, 23959 (2019).

    Article  ADS  Google Scholar 

  15. T. Li, M. Sun, J. Song, et al., Opt. Express, 29, 41552 (2021).

    Article  ADS  Google Scholar 

  16. H. Li, C. Ma, J. Wang, et al., Opt. Express, 29, 39419 (2021).

    Article  ADS  Google Scholar 

  17. D. Wei, S. Li, J. Zeng, et al., J. Russ. Laser Res., 41, 364 (2020).

    Article  Google Scholar 

  18. J. Li, J. Li, L. Guo, et al., Waves Random Complex Media, 31, 1931 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  19. Y. Xu, Y. Xu, S. Wang, et al., J. Russ. Laser Res., 43, 509 (2022).

    Article  Google Scholar 

  20. J. Yu, Y. Huang, F. Wang, et al., Opt. Express, 27, 26676 (2019).

    Article  ADS  Google Scholar 

  21. L. Zhao, Y. Xu, N. Yang, et al., J. Opt. Soc. Am. A Opt. Image Sci. Vis., 38, 1255 (2021).

  22. G. Liang, J. Li, Z. Luo, et al., J. Opt. Soc. Am. A Opt. Image Sci. Vis., 36, 2060 (2019).

  23. L. Zhao, Y. Xum and Y. Dan, Opt. Express, 29, 34986 (2021).

    Article  ADS  Google Scholar 

  24. L. Zhang, D. Deng, X. Chen, et al., Appl. Phys. B Lasers Opt., 125, 79 (2019).

    Article  ADS  Google Scholar 

  25. Q. Yang, Y. Gong, Z. Huang, et al., Appl. Optics, 59, 2849 (2020).

    Article  ADS  Google Scholar 

  26. K. Yong, S. Tang, X. Yang, and R. Zhang, J. Opt. Soc. Am. B, 38, 1510 (2021).

    Article  ADS  Google Scholar 

  27. Y. Xu, Y. Dan, J. Yu, and Y. Cai, J. Mod. Opt., 63, 2186 (2016).

    Article  ADS  Google Scholar 

  28. Y. Xu, T. Yang, Y. Dan, et al., Optik, 127, 7794 (2016).

    Article  ADS  Google Scholar 

  29. M. Yao, I. Toselli, and O. Korotkova, Opt. Express, 22, 31608 (2014).

    Article  ADS  Google Scholar 

  30. J. Wang, S. Zhu, H. Wang, et al., Opt. Express, 24, 11626 (2016).

    Article  ADS  Google Scholar 

  31. T. Yang, Y. Xu, H. Tian, et al., Optik, 127, 10772 (2016).

    Article  ADS  Google Scholar 

  32. T. Yang, Y. Xu, H. Tian, et al., J. Opt. Soc. Am. A Opt. Image Sci. Vis., 34, 713 (2017).

  33. H. Chen, X. Ji, G. Ji, and H. Zhang, J. Opt., 17, 085605 (2015).

    Article  ADS  Google Scholar 

  34. G.Wu, B. Luo, S. Yu, et al., J. Opt., 13, 035706 (2011).

    Article  ADS  Google Scholar 

  35. H. Chen, X. Ji, X. Li, et al., Opt. Laser Technol., 71, 22 (2015).

    Article  ADS  Google Scholar 

  36. L. Zhao, Y. Xu, and S. Yang, Optik, 227, 166115 (2021).

    Article  ADS  Google Scholar 

  37. Y. Dan and B. Zhang, Opt. Lett., 34, 563 (2009).

    Article  ADS  Google Scholar 

  38. Y. Dan and B. Zhang, Opt. Express, 16, 15563 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggen Xu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Xu, Y., Cao, J. et al. Propagation Characteristics of Partially-Coherent Radially-Polarized Vortex Beams Through Non-Kolmogorov Turbulence Along a Slant Path. J Russ Laser Res 44, 110–120 (2023). https://doi.org/10.1007/s10946-023-10114-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10114-0

Keywords

Navigation