Skip to main content
Log in

Kurtosis Parameter and Coupling Coefficient of Partially-Coherent Twisted Gaussian Beam Propagating Through Non-Kolmogorov Atmospheric Turbulence

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We derive analytical expressions of the kurtosis (K) parameter and the coupling (C) coefficient of the partially-coherent twisted Gaussian (PCTG) beam propagating through non-Kolmogorov atmospheric turbulence, which can be given by the initial second-order moments and fourth-order moments of the Wigner distribution function for the PCTG beam at the source plane. Numerical results indicate that for the smaller generalized structure parameter, larger generalized exponent parameter, inner scale and outer scale, the K parameter and the C coefficient of the PCTG beam are less affected by the turbulence. It also can be found that the PCTG beam with larger twisted factor and smaller waist width and initial coherent lengths can resist the effect of turbulence more effectively. We also find that the coupling properties of the PCTG beam in turbulence are only caused by the turbulence. Therefore, our results can provide reference for detecting the related parameters of atmospheric turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Ryabukho, D. V. Lyakin, and V. V. Lychagov, Opt. Spectrosc., 100, 724 (2006).

    Article  ADS  Google Scholar 

  2. E. Wolf, Proc. R. Soc. A, 230, 246 (1955).

    ADS  Google Scholar 

  3. L. Mandel and E. Wolf, Rev. Mod. Phys., 37, 231 (1965).

    Article  ADS  Google Scholar 

  4. J. C. Ricklin and F. M. Davidson, J. Opt. Soc. Am. A, 19, 1794 (2002).

    Article  ADS  Google Scholar 

  5. L. Zhao, Y. G. Xu, and Y. Q. Dan, Opt. Express, 29, 34986 (2021).

    Article  ADS  Google Scholar 

  6. Y. J. Cai and U. Peschel, Opt. Express, 15, 15480 (2007).

    Article  ADS  Google Scholar 

  7. T. van Dijk, D. G. Fischer, T. D. Visser, et al. Phys. Rev. Lett., 104, 173902 (2010).

    Article  ADS  Google Scholar 

  8. X. Guo, C. Yang, M. L. Duan, et al., Optik, 243, 167361 (2021).

    Article  ADS  Google Scholar 

  9. F. Wang, Y. J. Wang, and O. Korotkova, Opt. Express, 17, 22366 (2009).

    Article  ADS  Google Scholar 

  10. A. P. Zeng, Y. P. Huang, and Z. C. Duan, J. Russ. Laser Res., 39, 286 (2018).

    Article  Google Scholar 

  11. X. L. Liu, L. X. Liu, X. F. Peng, et al., J. Quantum Spectrosc. Radiat. Transfer, 222, 138 (2019).

    Article  ADS  Google Scholar 

  12. Y. M. Dong, F. Wang, C. L. Zhao, et al., Phys. Rev. A, 86, 013840 (2012).

    Article  ADS  Google Scholar 

  13. R. Simon and N. Mukunda, J. Opt. Soc. Am. A, 10, 95 (1993).

    Article  ADS  Google Scholar 

  14. L. Z. Pan, C. L. Ding, and X. Yuan, Opt. Commun., 274, 100 (2007).

    Article  ADS  Google Scholar 

  15. A. T. Friberg, E. Tervonen, and J. Turunen, Opt. Commun., 106, 127 (1994).

    Article  ADS  Google Scholar 

  16. J. Hu, X. L. Ji, H. Wang, et al., Opt. Express, 29, 23393 (2021).

    Article  ADS  Google Scholar 

  17. X. F. Peng, L. Liu, and Y. J. Yu, J. Opt., 18, 125601 (2016).

    Article  ADS  Google Scholar 

  18. F. Wang, Y. J. Cai, and H. T. Eyyuboglu, Opt. Lett., 37, 184 (2012).

    Article  ADS  Google Scholar 

  19. X. Q. Li and X. L. Ji, Opt. Commun., 298, 1 (2013).

    Article  ADS  Google Scholar 

  20. Z. Mei and D. Zhao, Opt. Laser Technol., 39, 586 (2007).

    Article  ADS  Google Scholar 

  21. S. Luo and B. Lu, Opt. Int. J. Light Electron Optik, 113, 227 (2002).

    Article  Google Scholar 

  22. G. Zhou, J. Opt., 13, 1 (2011).

    Google Scholar 

  23. Y. G. Xu, Y. Q. Dan, J. Y. Yu, et al., J. Mod. Opt., 64, 1976 (2017).

    Article  ADS  Google Scholar 

  24. H. H. Tian, Y. G. Xu, B. L. Zhang, et al., J. Mod. Opt., 66, 939 (2019).

    Article  ADS  Google Scholar 

  25. Y. Q. Dan and Y. G. Xu, J. Mod. Opt., 65, 803 (2018).

    Article  ADS  Google Scholar 

  26. P. Zhou, Y. X. Ma, X. L. Wang, et al., Appl. Opt., 48, 5251 (2009).

    Article  ADS  Google Scholar 

  27. D. J. Liu, Y. C. Wang, and H. M. Yin, Opt. Laser Technol., 78, 95 (2016).

    Article  ADS  Google Scholar 

  28. D. M. Wei, S. W. Li, J. Zeng, et al., J. Russ. Laser Res., 41, 364 (2020).

    Article  Google Scholar 

  29. Y. G. Xu, Y. Q. Dan, and B. Zhang, Optik, 127, 4590 (2016).

    Article  ADS  Google Scholar 

  30. W. H. Du, Z. Y. Yang, Z. Jin, et al., J. Russ. Laser Res., 41, 278 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggen Xu.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Xu, Y., Wang, S. et al. Kurtosis Parameter and Coupling Coefficient of Partially-Coherent Twisted Gaussian Beam Propagating Through Non-Kolmogorov Atmospheric Turbulence. J Russ Laser Res 43, 509–519 (2022). https://doi.org/10.1007/s10946-022-10077-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10077-8

Keywords

Navigation