Skip to main content
Log in

Propagation of Laser-Induced Hypersound Waves in Polycrystalline Diamond with Submicron Crystallites

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We investigate the propagation of laser-induced hypersound waves in polycrystalline diamond films by analyzing the spatial changes in the phase and amplitude of the probing laser beam reflected from the surface. We show that the velocity of bulk (longitudinal) acoustic waves is 14300 m/s in films with an average crystallite size of 0.2 μm and monotonically increases to 17200 m/s with increase in the crystallite size up to 2 μm. For surface waves, anomalous dispersion is observed, leading to a change in the phase velocity from 4800 to 6600 m/s, which is explained by the effective localization of the surface wave field in the diamond films. The values obtained can be used for the design of diamond films and membranes for applications in diamond photonics and acousto-electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Prelas, Handbook of Industrial Diamonds and Diamond Films, Routledge (2018).

  2. V. Sedov, A. Martyanov, A. Altakhov, et al., Coatings, 10, 939 (2020).

    Article  Google Scholar 

  3. M. Schreck, S. Gsell, R. Brescia, and M. Fischer, Sci. Rep., 7, 1 (2017).

    Article  Google Scholar 

  4. V. Sedov, A. Martyanov, S. Savin, et al., Diam. Relat. Mater., 114, 108333 (2021).

    Article  ADS  Google Scholar 

  5. V. Podgursky, A. Bogatov, V. Sedov, et al., Diam. Relat. Mater., 58, 172 (2015).

    Article  ADS  Google Scholar 

  6. V. G. Ralchenko, E. Pleuler, F. X. Lu, et al., Diam. Relat. Mater., 23, 172 (2012).

    Article  ADS  Google Scholar 

  7. B. P. Sorokin, G. M. Kvashnin, A. S. Novoselov, et al., Ultrasonics, 78, 162 (2017).

    Article  Google Scholar 

  8. V. S. Sedov, A. A. Voronin, M. S. Komlenok, et al., J. Russ. Laser Res., 41, 321 (2020).

    Article  Google Scholar 

  9. V. S. Sedov, A. K. Martyanov, A. A. Khomich, et al., Diam. Relat. Mater., 109, 108072 (2020).

    Article  ADS  Google Scholar 

  10. T. Tachizaki, T. Muroya, O. Matsuda, et al., Rev. Sci. Instrum., 77, 043713 (2006).

    Article  ADS  Google Scholar 

  11. J. Philip, P. Hess, T. Feygelson, et al., J. Appl. Phys., 93, 2164 (2003).

    Article  ADS  Google Scholar 

  12. G. W. Farnell and E. L. Adler, “Elastic Wave Propagation in Thin Layers,” in: Physical Acoustics, W. P. Mason and R. N. Thurston (Eds.), Academic Press, New York (1972), Vol. 9, p. 35.

  13. X. Chang, Y.-F. Wang, X. Zhang, et al., Appl. Phys. Lett., 112, 032103 (2018).

    Article  ADS  Google Scholar 

  14. P. Hill, E. Gu, M. D. Dawson, and M. J. Strain, Diam. Relat. Mater., 88, 215 (2018).

    Article  ADS  Google Scholar 

  15. B. P. Sorokin, G. M. Kvashnin, A. S. Novoselov, et al., “Application of thin piezoelectric films in diamond-based acoustoelectronic devices,” in: Piezoelectricity–Organic and Inorganic Materials and Applications, IntechOpen (2018), pp. 15–41.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Sedov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klokov, A.Y., Sharkov, A.I., Ralchenko, V.G. et al. Propagation of Laser-Induced Hypersound Waves in Polycrystalline Diamond with Submicron Crystallites. J Russ Laser Res 42, 580–585 (2021). https://doi.org/10.1007/s10946-021-09996-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-09996-9

Keywords

Navigation