Skip to main content
Log in

Relativistic Effects on Stimulated Brillouin Scattering of Self-Focused q-Gaussian Laser Beams in Plasmas with Axial Density Ramp

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We investigate the phenomenon of stimulated Brillouin scattering (SBS) of q-Gaussian laser beams nonlinearly-interacting with underdense plasmas. When an intense laser beam with frequency ω0 propagates through plasma, due to relativistic mass nonlinearity of plasma electrons, it gets coupled to a preexisting-ion acoustic wave (IAW) at frequency ωia. The nonlinear interaction of pump beam with IAWproduces a back-scattered wave at frequency ωs = ω0−ωia. In view of the variational theory, we obtain semi-analytical solutions of the coupled nonlinear wave equations for the three waves (pump, IAW, and scattered wave) under the Wentzel-Kramers-Brillouin (WKB) approximation. We show that the scattered-wave power is significantly affected by the self-focusing effect of the pump beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Craxton, K. S. Anderson, and T. R. Boehly, Phys. Plasmas, 22, 110501 (2015).

    Article  ADS  Google Scholar 

  2. K. A. Tanaka, B. Boswell, R. S. Craxton, et al., Phys. Fluids, 28, 2910 (1985).

    Article  ADS  Google Scholar 

  3. A. B. Bud’ko and M. A. Liberman, Phys. Fluids B, 4, 3499 (1992).

    Article  ADS  Google Scholar 

  4. R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon, Phys. Plasmas, 5, 1446 (1998).

    Article  ADS  Google Scholar 

  5. J. Myatt, A. V. Maximov, W. Seka, et al., Phys. Plasmas, 11, 3394 (2004).

    Article  ADS  Google Scholar 

  6. M. Yadav, D. Nandan Gupta, and S. C. Sharma, Phys. Plasmas, 27, 093106 (2020).

    Article  Google Scholar 

  7. A. Singh and N. Gupta, Laser Part. Beams, 34, 230 (2016).

    Article  ADS  Google Scholar 

  8. N. Gupta and A. Singh, Cont. Plasma Phys., 56, 889 (2016).

    Article  ADS  Google Scholar 

  9. R. N. Agarwal, V. K. Tripathi, and P. C. Agarwal, IEEE Trans. Plasma Sci., 24, 143 (1996).

    Article  ADS  Google Scholar 

  10. B. I. Cohen, C. J. McKinstrie, and E. A. Startsev, Phys. Plasmas, 9, 4375 (2002).

    Article  ADS  Google Scholar 

  11. C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids, 17, 1211 (1974).

    Article  ADS  Google Scholar 

  12. D. W. Forslund, J. M. Kindel, and E. L. Lindman, Phys. Fluids, 18, 1002 (1975).

    Article  ADS  Google Scholar 

  13. D. W. Forslund, J. M. Kindel, and E. L. Lindman, Phys. Rev. Lett., 30, 739 (1973).

    Article  ADS  Google Scholar 

  14. C. J. Randall, J. J. Thomson, and K. G. Estabrook, Phys. Rev. Lett., 43, 924 (1979).

    Article  ADS  Google Scholar 

  15. L. Brillouin, Ann. Phys. (France), 17, 88 (1922).

  16. R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, Phys. Rev. Lett., 12, 592 (1964).

    Article  ADS  Google Scholar 

  17. T. H. Maiman, Nature, 187, 493 (1960).

    Article  ADS  Google Scholar 

  18. A. Singh and K. Walia, J. Fusion Ener., 32, 355 (2013).

    Article  ADS  Google Scholar 

  19. A. Singh and K. Walia, Opt. Commun., 290, 175 (2013).

    Article  ADS  Google Scholar 

  20. A. Singh and K. Walia, J. Fusion Ener., 31, 531 (2012).

    Article  ADS  Google Scholar 

  21. R.P. Sharma, P. Sharma, S. Rajput, and A. K. Bhardwaj, Laser Part. Beams, 27, 619 (2009).

    Article  ADS  Google Scholar 

  22. Q. Feng, L. Cao, Z. Liu, et al., Sci. Rep., 10, 3492 (2020).

    Article  ADS  Google Scholar 

  23. S. Weber, C. Riconda, and V. T. Tikhonchuk, Phys. Plasmas, 12, 043101 (2005).

    Article  ADS  Google Scholar 

  24. P. K. Patel, M. H. Key, A. J. Mackinnon, et al., Plasma Phys. Control. Fusion, 47, B833 (2005).

    Article  Google Scholar 

  25. M. Nakatsutsumi, J. R. Davies, R. Kodama, et al., New J. Phys., 10, 043046 (2008).

    Article  Google Scholar 

  26. C. Tsallis, Braz. J. Phys., 39, 337 (2009).

    Article  ADS  Google Scholar 

  27. A. I. Akhiezer and R. V. Polovin, Sov. Phys. JETP, 3, 696 (1956).

    Google Scholar 

  28. D. Anderson, M. Bonnedal, and M. Lisak, J. Plasma Phys., 23, 115 (1980).

    Article  ADS  Google Scholar 

  29. D. Anderson and M. Bonnedal, Phys. Fluids, 22, 105 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  30. H. Kumar, M. Aggarwal, Richa, and T. S. Gill, J. Opt. Soc. Am. B, 35, 1635 (2018).

  31. A. Sharma and I. Kourakis, Laser Part. Beams, 28, 479 (2010).

    Article  ADS  Google Scholar 

  32. N. Gupta and S. Kumar, Laser Phys., 30, 066003 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Choudhry, S., Bhardwaj, S.B. et al. Relativistic Effects on Stimulated Brillouin Scattering of Self-Focused q-Gaussian Laser Beams in Plasmas with Axial Density Ramp. J Russ Laser Res 42, 418–429 (2021). https://doi.org/10.1007/s10946-021-09978-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-09978-x

Keywords

Navigation